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ABSTRACT  

This report describes the results of statistical 

estimation of models of scrappage rates and 

survival probabilities as a function of vehicle age for 

U.S. light-duty vehicles. The data used are counts 

of vehicles in operation by vehicle type and model 

year for calendar years 2002-2020, which allows 

scrappage functions to be estimated for years 

2003-2020. Models were estimated for three 

vehicle types: passenger cars, SUVs and vans, and 

pickup trucks. The models are structured to 

estimate trends in scrappage and survival rates 

over time for each vehicle type. Modified logistic 

functions were found to fit the data well, with R2 

values of 0.99 and statistically significant trends 

and fixed effects for each vehicle type. Results of 

estimation via nonlinear least squares indicate that 

life expectancies for all three vehicle types 

increased over the study period by 2-3 years for 

passenger cars, 3-4 years for SUVs and Vans, and 

5-6 years for pickup trucks. By 2020, median 

expected lifetimes ranged from about 17 years for 

passenger cars, and 20 years for SUVs and vans, 

to about 25 years for pickup trucks. 

INTRODUCTION  

Statistical modeling of survival and “time-to-event” 

has an extensive literature and range of application 

from medicine to engineering (e.g., Hosmer et al., 

2008).  Economists and engineers have been 

modeling the scrappage rates and survival 

probabilities of motor vehicles for more than 50 

years.  Predicting the speed at which the stock of 

motor vehicles will turn over is important to 

analyzing the benefits and costs of policies such as 

 
1 The functions assume age is a continuous variable. In 
practice, data on vehicles in operation are assigned 
integer age values and models typically predict at 

promoting deep decarbonization, energy efficiency, 

reduced pollutant emissions and vehicle safety.  

Early studies were limited by the relatively small 

number of ages tracked in available data and the 

lack of detailed information about vehicle attributes. 

Today, fifty vehicle vintages are reported and 

individual vehicles can be identified.  The 

remainder of this section presents a mathematical 

definition of survival and scrappage rate functions.   

Survival times and failure rates (scrappage) of 

equipment are traditionally modeled by survival and 

hazard functions. Let fX(a) be the probability density 

function for failure at age a.1 The probability of 

failure by age a is the integral of fX(a) from 0 to a: 

𝐹𝑋(𝑎; 𝜆, 𝑘) = 𝑝(𝑋 ≤ 𝑎) = ∫ 𝑓𝑋(𝑥; 𝜆, 𝑘)𝑑𝑥
𝑎

0
. (1) 

The survival function, the probability of surviving to 

at least a-years old is SX(a) = 1-FX(a). Note that 

fX(a) is not the probability of failure (scrappage) 

given that the equipment has survived to a-1 but 

rather the unconditional probability of failure at time 

a. The relative risk of scrappage in an infinitesimally 

small time interval after a, given (conditional on) 

survival to a is given by the hazard function which 

is the ratio of the pdf to the survival function, as 

shown in equation 2. 

ℎ𝑋(𝑎) =
𝑓𝑋(𝑎)

𝑆𝑋(𝑎)
     (2) 

In discrete time, the hazard function is the 

probability of scrappage during the time interval a 

to a+1 divided by the probability of survival to age 

a. The hazard or conditional scrappage function is 

not a probability density function because, in 

general, it does not integrate to 1 over age, a. 

Vehicle survival functions are cumulative probability 

density functions that represent the probability of 

surviving to a given age, x, for a new vehicle sold in 

year t:  

𝑝𝑡(𝑥)      (3) 

The conditional survival probability function (csp  f) 

represents the probability of a new vehicle surviving 

to age x+1, given that a vehicle has survived to age 

x.  The scrappage rate function is 1 minus the cspf. 

discrete intervals. In such cases, the probability mass 
function can be substituted for the probability density 
function. 
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𝑝(𝑥 + 1 | 𝑥)     (4) 

The cumulative survival function is therefore the 

cumulative product of the conditional survival 

probabilities. 

𝑝(𝑥) = 𝑝(𝑥|𝑥 − 1)𝑝(𝑥 − 1|𝑥 − 2) … 𝑝(1|0)1  (5) 

Scrappage rates are estimated by 1 minus the 

conditional probability of survival, i.e., one minus 

the ratio of the number of x-year-old vehicles in 

operation in year t to the number of x-1-year-old 

vehicles in operation in year t-1. 

1 − 𝑝(𝑥|𝑥 − 1) = 1 −
𝑛(𝑥,𝑡)

𝑛(𝑥−1,𝑡−1)
=

𝑛(𝑥−1,𝑡−1)−𝑛(𝑥,𝑡)

𝑛(𝑥−1,𝑡−1)
 

      (6) 

The unconditional survival probability function (the 

cumulative survival function) is calculated from the 

conditional survival probabilities using equation 5. 

This report presents the results of an analysis of 

recent trends in survival and scrappage rates for 

light-duty vehicles in the U.S.  Models are 

estimated for three vehicle categories: passenger 

cars, SUVs and vans, and pickup trucks.  Functions 

are estimated for calendar years 2003 to 2020, 

over which time the number of age groups 

increases from 33 to 50 years.  Section II presents 

a review of the literature on vehicle scrappage and 

survival, focusing on functional forms and 

methodology.  Section III presents the details of the 

modified logistic model used in this analysis.  

Section IV describes the vehicle population data, 

and Section V presents the results of the statistical 

estimation, focusing on trends in vehicle longevity.  

Section VI discusses the potential implications of 

the statistical analysis for public policy and possible 

directions for future research. 

REVIEW OF VEHICLE 

SCRAPPAGE LITERATURE  

Previous analyses of automobile scrappage have 

used several different functions to model scrappage 

as a function of vehicle age or cumulative mileage 

with a tendency to prefer Weibull or logistic 

functional forms (Engers et al, 2009). Zachariadis 

et al. (2001) proposed using the two parameter 

Weibull distribution as a function of vehicle age to 

model the effect of technological changes in vehicle 

emissions over time. Xu and Gao (2019) used three 

types of survival models (Kaplan-Meier, exponential 

and Weibull) to analyze the relationship between 

engine and transmission faults and vehicle survival. 

They concluded that vehicle lifetimes had been 

increasing due to improved reliability of engines 

and transmissions. Kolli et al. (2010) tested Beta, 

Gamma, Lognormal and Weibull distributions and 

concluded that the Beta and Weibull fit their data 

best. In a study of vehicle lifetimes in Japan, 

Kagawa et al. (2011) found that likelihood ratio 

tests supported use of the generalized gamma 

distribution of which the Weibull function is a 

special case. A study of vehicle lifetimes in 17 

countries did not reject the hypothesis that lifetimes 

followed the Weibull distribution (Oguchi and Fuse, 

2015).  

“Mechanistic” scrappage models estimate 

scrappage solely as a function of age or cumulative 

miles while “economic” models add equations to 

estimate the effects of economic and other factors 

that vary over time and space. Mechanistic 

conditional scrappage rate (r*) models were 

estimated by Walker (1968), Parks (1977) and 

Greene and Chen (1981). Walker (1968) was the 

first to specify a scrappage model comprised of 

separate mechanistic and economic equations. 

Mechanistic scrappage was estimated as a logistic 

function of vehicle age. 

𝑟∗(𝑎) =
1

𝐴+𝐵𝑒−𝛽𝑎     (7) 

Year-to-year changes in the total number of 

vehicles scrapped, q, were estimated by a separate 

log-linear function of the price of used vehicles, P, 

the ratio of new vehicle sales to total stock (the 

turnover rate, R), and the aggregated mechanistic 

scrappage rate predicted using equation 7, r*, 

multiplied by the total stock of vehicles, n. 

𝑞𝑡 = 𝐴𝑅𝑡
𝛼𝑃𝑡

𝛽
𝑟𝑡

∗𝑛𝑡    (8) 

Parks (1977) imbedded economic factors (xj) in a 

logistic scrappage equation, and estimated the logit 

of the scrappage rate as a linear function of the 

ratio of the price of an a-year-old used car, Pu(a,t), 

to a price index of repair costs, Pm(t), and the ratio 

of the scrappage price of an a-year-old vehicle, 

Ps(a,t), to the repair cost index. 
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𝑙𝑛 (
𝑟∗(𝑎,𝑡)

1−𝑟∗(𝑎,𝑡)
) = ∑ 𝛽𝑗𝑥𝑗(𝑎, 𝑡)  →  𝑟∗(𝑎, 𝑡) =𝑗

1

1+𝑒
− ∑ 𝛽𝑗𝑥𝑗(𝑎,𝑡)𝑗

     (9) 

Greene and Chen (1981) estimated mechanistic 

scrappage models for passenger cars and light 

trucks using a modification of Walker’s (1968) 

logistic function that included an asymptotic 

scrappage rate (A).  

𝑟∗(𝑎) =
1

𝐴+𝐵𝑒−(𝛽0+𝛽1𝑎)     (10) 

Based on 1966-77 data with only 12 age groups, 

they found significant differences in expected 

median lifetimes (9.9 years for cars and 16.4 for 

trucks) and asymptotic scrappage rates (cars, 0.29; 

trucks, 0.13). Using data on U.S. vehicles in 

operation from 1966-1992, Miaou (1995) estimated 

an expanded logistic model in which the 

exponential function in equation 10 was a function 

of socioeconomic variables, including new and 

used car prices, as well as age. 

Manski and Golding’s (1983) analysis of vehicle 

scrappage in Israel appears to be the earliest study 

of the combined effects of new and used vehicle 

prices on scrappage. Hamilton and Macauley 

(1999) divided scrappage effects into an 

“embodied” durability effect (similar to mechanistic 

scrappage) and a “dis-embodied” effect that 

included not only economic factors but also the 

effect of such things as reduced accident rates. 

Beginning with the model of Greene and Chen 

(1981) (equation 10), they added a linear equation 

that made the coefficient of age, β1, a function of a 

set of “disembodied” variables and a set of 

“embodied” variables. The embodied variables 

consisted of model year indicator variables while 

the disembodied variables were calendar year 

indicators. After removing the first four years of a 

model year’s life and any years that implied 

negative scrappage rates, they were left with 11 

age groups for each of 42 calendar years from 

1950 to 1991. Their overall conclusion was that dis-

embodied (calendar year) factors had no effect until 

after 1970 but that subsequently vehicle life 

expectancy increased substantially. Vintage 

specific factors appeared to have little effect but, if 

anything, appeared to reduce life expectancy. 

Greenspan and Cohen (1999) also modeled 

“engineering scrappage” (mechanistic) and “cyclical 

scrappage” (economic) separately. Engineering 

scrappage was modeled as a function of time and 

age. Cyclical scrappage, defined as actual total 

scrappage minus estimated engineering 

scrappage, was modeled as a linear function of the 

unemployment rate and price indexes for new 

vehicles, vehicle repairs and gasoline. 

Citing an unpublished 2001 study by Schmoyer 

using Greenspan and Cohen’s methodology, Davis 

et al. (2014) reported scrappage and survival rates 

for passenger cars and light trucks of model years 

1970, 1980 and 1990.  The estimates indicate that 

passenger car median survival times increased 

from 11.5 years for the 1970 model year to 16.9 

years for 1990 model year cars. The study found a 

slight decline in light truck median lifetimes, from 

16.2 years in 1970 to 15.5 years in 1990. 

In early studies, scrappage models were estimated 

using aggregate survival rates of large numbers of 

vehicles as the dependent variable. Chen and 

Niemeier (2005) estimated Weibull scrappage 

functions based on individual vehicles randomly 

sampled from California’s smog inspection 

program. Their model employed a mass point 

method that allowed them to estimate the effects of 

other variables, such as state of repair and make, 

on the probability of survival.  

The National Highway Traffic Safety Administration 

(NHTSA, 2006) estimated survival functions for 

passenger cars and light trucks as a function of age 

for use in regulatory analyses. Survival was defined 

as the ratio of the number of model year y vehicles 

in operation in a given year, t=y+a, where a is 

vehicle age, divided by the number in operation in 

the year in which that cohort of vehicles was new, 

t=y. Thus, NHTSA’s function is an unconditional 

survival function. NHTSA (2006) estimated two-

piece survival functions for passenger cars and 

light trucks as a function of age. In equation 9, A 

and B are constants to be estimated for cars ten 

years old or less (i = 1) and older than ten years (i = 

2). For light trucks the breakpoint was put at 12 

years. 

𝑟𝑣(𝑎) = 1 − 𝑒−𝑒𝐴𝑖+𝐵𝑖𝑎
; 𝑖 = 1,2   (11) 
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Li et al. (2009) estimated a logistic scrappage 

model using data for 20 U.S. metropolitan areas 

that is model and vintage specific for the years 

1997-2000 but only market segment specific for 

2001-2005. The model and model year detail 

permitted the inclusion of seven sets of indicator 

variables in addition to gasoline price, fuel 

economy, median household income and 

household size. The results indicated that when 

gasoline prices increased, scrappage rates 

decreased for the most efficient 20% of vehicles 

and increased for the lower 80% of vehicles. 

Scrappage models have been used extensively to 

estimate the impacts of accelerated scrappage 

policies on vehicle fuel use and emissions. A 

review of early studies is provided by Van Wee et 

al. (2011). Li and Wei (2013) used a discrete choice 

framework to analyze the impacts of the U.S. Cash 

for Clunkers program on vehicle scrappage, new 

vehicle demand and emissions. Three variables 

were included in the model, vehicle age, fuel 

consumption per mile and vehicle type (car vs. light 

truck), as well as fixed effects for make of vehicle. 

Separate regressions were estimated for the 5-year 

scrappage rate from 2001-2005 and the 3-year 

scrappage rate from 2006-2008.  

Jacobsen and Van Bentham (2015) analyzed 

scrappage rates for U.S. vehicles up to 19 years of 

age over the period 1999-2009, at the make, model 

and trim level. They regressed the logarithms of 

scrappage rates on the logarithms of used car 

prices and indicator variables comprised of make-

model interacted with age and calendar year 

interacted with age. Recognizing the endogeneity 

of used car scrappage rates and used car prices, 

they substituted an instrumental variables estimate 

of used car prices for the actual prices.  

Both new and used car prices have been included 

among the economic factors affecting scrappage 

rates. Recent studies indicate that scrappage is 

inelastic with respect to new and used vehicle 

prices (Jacobsen et al., 2021) Elasticities of vehicle 

scrappage with respect to used car values 

estimated by Jacobsen and van Bentham (2015) 

 
2 The similarity of newer and older vehicles’ price 
elasticities may be due to the much lower prices of older 
vehicles. The elasticities still imply that older vehicles’ 

ranged from -0.36 for pickups to -0.77 for vans. 

Combining all classes together produced an 

elasticity estimate of -0.7. Considering only vehicles 

aged 10-19, the estimate for all classes combined 

was -0.602, with a range of -0.19 (pickups) to -0.92 

(vans) across vehicle classes. A somewhat lower 

elasticity, -0.36, was found by Bento et al. (2018) 

for U.S. light-duty vehicles over the period 1969-

2014.  

Alberini et al. (2018) used a Weibull hazard function 

to estimate the effects of emissions taxes on the 

scrappage of used vehicles aged 4 to 14 years in 

Switzerland. They chose a Weibull hazard function 

with λ =1 and a proportional hazard model. The 

proportional hazard function is convenient for 

introducing additional variables, Z, that can affect 

scrappage rates besides age or cumulative miles 

because it is separable in the influencing variables.  

ℎ(𝑥, 𝑍) = ℎ0(𝑥)𝑒𝒁𝛽 = 𝑘𝑥𝑘−1𝑒𝐙𝛽  (12) 

Bento et al. (2018) fitted a logistic function to U.S. 

vehicle conditional scrappage rates for vehicles up 

to 14 years old (e.g., Bento et al., 2018; Greene 

and Chen, 1981). Unlike the Weibull hazard 

function, the logistic hazard function approaches an 

asymptotic scrappage rate (1/L) as age, x, 

increases. 

𝐹(𝑥) =
1

𝐿+𝐵𝑒−𝛽𝑥     (13) 

Bento et al. (2018) assumed that F(x) represented 

an “engineering” scrappage rate and that “cyclical” 

factors such as used car prices, P, rate of turnover 

of vehicle ownership, r, and the number of vehicles 

in operation, n, would proportionately affect 

scrappage rates. 

ℎ𝑡(𝑥, 𝑍) = 𝛼0𝑟𝑡
𝛼𝑝𝑡

𝛽
𝑛𝑡𝐹𝑡(𝑥)    (14) 

Zheng et al. (2019) estimated the logistic 

scrappage model used by Greene and Chen (1981) 

to quantify the effects of a change in China’s 

mandatory scrappage regulations on the expected 

median lifetime of four types of light-duty vehicles. 

Lu et al. (2018) used a two-parameter logistic 

function to model the survival and scrappage rates 

scrappage rates will respond more than newer vehicles’ 
scrappage rates to an equal dollar reduction in price. 
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of eight types of vehicles in China. The authors 

note that although vehicle scrappage and survival 

rates are normally affected by a number of 

parameters, including vehicle age, new vehicle 

prices, repair costs, cumulative distance traveled, 

fuel prices, emissions regulations, fuel economy 

and subsidies, vehicle survival rates in China were 

mainly affected by China’s mandatory scrappage 

standards. Their analysis is similar to the seminal 

work on Chinese vehicle scrappage by Hao et al. 

(2011) which employed a Weibull function to model 

the evolution of private passenger vehicles, 

business passenger vehicles and taxis in China. 

Nakamoto et al. (2019) employed Weibull 

distributions to represent the cumulative scrappage 

functions of 15 countries in an assessment of 

lifecycle CO2 emissions. The parameters of the 

Weibull functions were taken from an analysis by 

Oguchi and Fuse (2015) of data spanning the years 

2000-2009.  Rith et al. (2020) developed a 

simplified method for estimating Weibull survival 

functions for developing countries with limited data 

on vehicles in operation. 

Zaman and Zacour (2020) simulated consumers’ 

new vehicle purchase and scrappage decisions 

under varying incentives to accelerate scrappage 

by means of a dynamic programming model3 

similar to the optimal replacement model of Baltas 

and Xepapadeas (1999). Laborda and Moral (2020) 

used a logistic scrappage function to estimate the 

effects of accelerated scrappage programs in 

Spain. Variables included in the scrappage function 

in addition to vehicle age were gross domestic 

product, the volume of used sales, roadway 

fatalities and injuries, and (0,1) variables 

representing different scrappage incentives. 

Gohlke and Cribioli (2021) estimated survival 

probabilities for light-duty vehicles as a whole and 

by powertrain, by comparing new vehicle sales data 

by model year to the numbers of vehicles in 

operation in calendar year 2021, estimating a 

median survival time of 17.6 years. Looking at 

individual models, they found that pickup trucks like 

the Ford F150 had expected survival times 

 
3 The model assumed a constant maximum vehicle 
lifetime and divided consumers into high and low income 
groups with different propensities to purchase new and 

substantially longer (about 22 years) than sedans 

like the Honda Civic (about 18 years). Although 

were more limited, they found that hybrid vehicles’ 

expected median survival times were comparable 

to those of all light-duty vehicles (18.3 vs. 17.6 

years). With ten or fewer model years of data, 

definitive estimates of survival curves for plug-in 

and full battery electric vehicles could not be 

estimated. 

NHTSA (2022) updated a previous (NHTSA, 2008) 

logistic model of scrappage as a function of vehicle 

age, new and used car prices, fuel prices, fuel 

economy, GDP, and other variables. 

𝑟𝑡(𝑎, 𝒙) =
∑ 𝛽𝑗𝑥𝑗𝑗

1+∑ 𝛽𝑗𝑥𝑗𝑗
    (15) 

Using data on vehicles in operation from 1975-

2017, NHTSA (2022) estimated separate equations 

for passenger cars, SUVs and vans and pickup 

trucks.  Fixed effects were included for model years 

to represent trends in vehicle technology, and for 

calendar years 2009 and 2010 to represent the 

effects of the Great Recession and policies 

implemented during those years to accelerate the 

retirement of used vehicles. The analysis detected 

a trend of increasing vehicle longevity, but noted 

that the trend might be affected by the fact that the 

number of age categories included in the data 

steadily increased over time.  The logistic 

scrappage function was used for ages up to 30 

years.  Beyond thirty years of age an “accelerated 

decay function” was used to reduce the number of 

older vehicles and insure that the total vehicle 

counts predicted by the model matched the 

historical data.  

Despite intense interest in modeling the future 

evolution of the stocks of zero emission vehicles, 

empirical research has been limited by the lack of 

data on modern electric vehicles of sufficient age to 

experience significant scrappage. Spangher et al. 

(2019) used an agent-based model to simulate the 

impact of electric vehicles sales on CO2 emissions. 

Lacking data on electric vehicles, their model used 

logistic scrappage probabilities as a function of age 

for five types of light-duty vehicles based on 

used vehicles. They calibrated the model using plausible 
assumptions rather than historical data and conducted 
sensitivity tests on parameter values. 
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conventional internal combustion engine vehicles. 

Nakamoto et al. (2019) were also unable to 

estimate cumulative scrappage functions for 

different vehicle types and propulsion systems. 

They concluded that “…expanded analysis with a 

focus of wide variety of vehicle models is an 

important and challenging future work.” (p. 1043) 

LOGISTIC SCRAPPAGE MODEL  

Review of the literature reveals four general issues 

relevant to this analysis of trends in light-duty 

vehicle scrappage and survival.  

1. The conceptual distinction between 

mechanistic vs. economic models 

2. Choice of functional form between Weibull 

and logistic functions 

3. Changes in scrappage and survival rates 

over time 

4. Differences in scrappage rates among 

vehicle types 

Vehicle scrappage analyses have long recognized 

that although scrappage patterns are most strongly 

related to vehicle age and use, economic and other 

factors are also important. The concept of 

mechanistic scrappage includes wear and tear with 

cumulative use and exposure, as well as inherent 

durability due to technology embodied in the 

vehicle (materials and the quality of design and 

manufacture).  Economic factors include supply, 

demand and prices, design and technological 

obsolescence, economic determinants of vehicle 

use, maintenance and repair, and public policies. 

Because our primary interest is in trends in vehicle 

longevity regardless of cause, and trends toward 

increased longevity that may continue into the 

future, we represent the combined mechanistic and 

economic effects with time trend variables and 

calendar year and vintage fixed effects. We also 

estimate separate functions for three vehicle types: 

1) passenger cars, 2) SUVs and vans, and 3) 

pickup trucks.  Differences among the three vehicle 

types found by NHTSA (2022) are clearly evident in 

the graphs shown below. 

Both Weibull and logistic functional forms have 

been widely used in the literature to model 

conditional scrappage rates. We estimate both 

forms, and both produce statistically highly 

significant coefficient estimates and R2 values of 

0.98 or better. However, we decided in favor of the 

logistic function based on analysis of residuals from 

the fitted models, as explained in appendix A.  

The logistic probability density function (pdf) 

provides a flexible basis for constructing a 

conditional survival probability function. As noted 

above, the conditional survival probability function 

(cspf) is not a probability density function and does 

not integrate to 1 over the range of ages. Instead, it 

describes the probability that a vehicle that has 

survived to age x, will also survive to age x+1. The 

logistic pdf is shown in equation 1, in which μ is the 

mean, median and mode of the pdf and σ scales 

the effect of increasing age on the probability of 

survival. 

𝑓(𝑥; 𝜇, 𝜎) =  
𝑒−(𝑥−𝜇)/𝜎

𝜎(1+𝑒−(𝑥−𝜇)/𝜎)2   (16) 

The pdf can be readily modified to become a cspf 

by including a scaling factor, K, (since the cspf 

does not integrate to 1) and an asymptotic 

scrappage rate, A, to allow the cspf to be 

asymmetric, and to allow the possibility that the 

probability of survival may not converge toward 0 

within the range of ages in the data. The modified 

cspf is shown in equation 17, which has been 

rearranged by multiplying numerator and 

denominator by 𝑒(𝑥−𝜇)/𝜎. 

𝑔(𝑥; 𝜇, 𝜎, 𝐾, 𝐴) =  
𝐾

(𝑒(𝑥−𝜇)/2𝜎+𝑒−(𝑥−𝜇)/2𝜎)2+𝐴
 (17) 

Equation 17 is static and does not include the fact 

that technological advances and economic factors 

may change the coefficients of the cspf over time. 

To include the effects of changes in economic 

factors over time, K is replaced by annual fixed 

effects, exp(atdt), where at is a year-specific 

constant and dt a year-specific indicator variable, 

for  t = 2003 to 2020. The possibility of a linear 

trend in average age is included by replacing μ by 

μ0 + μ1t, and σ is replace by σ0 + σ1t. Technological 

change, on the other hand, is expected to be 

incorporated in vehicles predominantly by model 

year rather than affecting all ages of vehicles in a 

calendar year. This possibility is included by 

multiplying centered age, x-μ, by exp(βy), where y 

increases from 0 to 70 as model year increases 

from 1950 to 2020.  
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DATA 

The data used in this analysis are proprietary 

counts of light-duty vehicles in operation on 

January 1 of each year, in the United States. Use of 

the data was purchased from IHS Markit Insight™, 

which requires nondisclosure of the data but 

permits publication of statistical inferences derived 

from it that do not disclose the original counts. The 

data were aggregated to make, model, body style 

and trim levels by calendar year and model year. 

These data were further aggregated into three 

vehicle types within each age group, 1) passenger 

cars, 2) SUVs, minivans and passenger vans, 3) 

pickup trucks. Vehicle age is calculated by 

subtracting a vehicle’s model year from the current 

calendar year.4 For calendar year 2003 there are 

33 age groups, and the number of age groups 

increases by one each year to 50 age groups in 

2020. 

When vehicles are new or 1 to 2 years old, it is 

common for vehicles in operation data to show 

negative scrappage, i.e., an increase in vehicles in 

operation. Frequently, the entire production of a 

model year is not sold within the first or even 

second calendar year. In addition, a new model 

year is typically introduced before its corresponding 

calendar year. For this reason, the scrappage 

functions are estimated using ages 3 and older.  

ESTIMATION AND RESULTS  

The full cspf model was estimated using the 

Stata™ statistical software’s nonlinear least square 

routine with the robust standard errors option to 

correct for heteroscedasticity and certain types of 

misspecification. Models were estimated for three 

vehicle types: passenger cars, SUVs and vans, and 

pickup trucks, without weighted observations and 

with weighting of observations by the number of 

vehicles in operation for the respective vehicle type, 

age and calendar year. All models achieved 

adjusted R2 values of 0.995 and all coefficient 

 
4 In a few cases of new vehicle registrations, a vehicle’s 
model year exceeds the calendar year. We code these 
observations as having an age of 0, representing a new 
vehicle.  
5 R-squared values in nonlinear models can be 
misleading. Mean squared error (MSE) is an alternative 

estimates of all models were statistically significant 

at the 0.0001 level, using the robust standard error 

estimates. The detailed results are shown in 

Appendix B. Despite the high R2 values, patterns in 

the residual plots indicate a small remaining lack of 

fit for the logistic functional form or possible 

misspecification due to omission of explanatory 

variables other than age and vintage. There is also 

clear evidence of heteroscedasticity, confirming the 

appropriateness of using the robust estimation 

method (Figures 1-3). As expected, residuals from 

the regressions weighted by vehicles in operation 

show smaller variance for vehicles up to about 20 

years of age, but increased variance for older 

vehicles. The residual plots also suggest there may 

be a few outliers in the data. Unweighted 

scrappage models for passenger cars and pickups 

were re-estimated, respectively deleting 2 and 4 

seeming outliers. There were small differences in 

some estimated coefficients.  The results shown in 

graphs below and the regression results reported in 

Appendix B do not exclude potential outliers, but 

include all data points. 

Figure 1a. Residuals from the Full Logistic 

Scrappage Model for Passenger Cars 

 

measure of model fit that can be more meaningful. 
Similarly parameterized Weibull models had MSE values 
that were 7% larger than the logistic model MSEs for 
pickups, 46% larger for SUVs and vans, and 51% larger 
for passenger cars.  
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Figure 1b. Residuals from Scrappage Model with 

VIO-Weighted Observations: Passenger Cars. 

 

 

 

 

Figure 2a. Residuals from the Full Logistic 

Scrappage Model for SUVs and Vans 

 

 

 

 

 

 

 

Figure 2b. Residuals from Scrappage Model with 

VIO-Weighted Observations: SUVs and Vans.  

 

 

 

 

Figure 3a. Residuals from the Full Logistic 

Scrappage Model for Pickup Trucks 
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Figure 3b. Residuals from Scrappage Model with 

VIO-Weighted Observations: Pickups. 

 

The conditional survival probability functions for 

passenger cars, SUVs and Vans and Pickups for 

calendar years 2003, 2011 and 2019 (8-year 

intervals) are shown in Figures 4-6.6 In the legend, 

“W” indicates that the estimates are based on 

observations weighted by vehicles in operation. 

The weighted estimates are represented by open 

squares while the unweighted estimates are 

represented by filled circles.  Graphs showing all 

years can be found in Appendix C.  The functions 

are strikingly different across the vehicle types. The 

passenger car functions are narrower, peak at 

conditional scrappage probabilities of 0.16 to 0.21. 

The ages at which scrappage probability peaks 

have shifted over time towards longer lifetimes. For 

passenger cars, the age of maximum scrappage 

shifts from μ = 19.4 years in 2003 to μ = 22.4 in 

2020, based on the calendar year logistic 

scrappage model coefficients fitted to weighted 

data. For SUVs and vans, the increase is from 19.5 

years in 2003 to 22.1 years, while pickups show the 

largest shift, from 24.4 years in 2003 to 28.2 years 

in 2020. Weighting the data by the numbers of 

vehicles in operation by model year and calendar 

year increased conditional scrappage rates for 

newer vehicles in 2019 and decreased scrappage 

rates for older vehicles in 2003. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
6 The years were chosen to be at equal time intervals, 
but also because the 2020 scrappage and survival 
functions deviate from the general trend, as can be seen 

in Appendix C. The reason for the change in 2020 is not 
obvious and suggests the importance of further analysis 
to explore the impacts of economic factors. 
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Figure 5. Conditional Scrappage Probability Functions for 2003, 2011 and 2019: SUVs and Vans. 

The conditional scrappage functions for pickups are broader still, with even lower peak scrappage rates of 

approximately 0.07 to 0.12. Weighting the data caused only minor changes in scrappage probabilities. 

 

Figure 6. Conditional Scrappage Probability Functions for 2003, 2011 and 2019: Pickup Trucks. 
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The trend toward increasing vehicle lifetimes is also evident in the cumulative survival probability functions 

(Figures 7-9). Over the 17-year period from 2003 to 2020, the median expected lifetimes of all vehicle types 

increased by several years. For all three vehicle types, functions based on weighted and unweighted data are 

very similar, but the 2019 functions for cars and SUVs indicate lower survival rates. 

 

Figure 7. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: Passenger Cars. 

 

Figure 8. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: SUVs and Vans. 
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Figure 9. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: Pickup Trucks. 

The graphs in Figures 4-9 suggest that there has been a steady increase in longevity, year after year. 

However, the individual calendar year functions tell a more nuanced story. Changes in the calendar year fixed 

effects cause ups and downs in maximum scrappage rates and some deviations from the trend of increasing 

longevity, indicating that temporal factors shift the scrappage schedules from one year to the next (Figure 10). 

The year-by-year estimates show relatively little change in median expected lifetimes from 2003-2012, with 

greater increases from 2013-2020. The full set of cspf curves are shown in Appendix C. 

The cumulative survival probability curves for each vehicle type were used to calculate median expected 

survival ages by calendar year (Figure 10). The results indicate a period of constant or slowly increasing 

median expected lifetimes through about 2010, followed by a more rapid increase through 2020. The data 

again indicate that pickup trucks have experienced the greatest increase in life expectancy. However, the data 

also reflect notable variation by calendar year, suggesting an important influence of economic factors.  
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DISCUSSION 

The enhanced logistic function with calendar year 

fixed effects, linear trends in k, μ, σ and the 

asymptote, and exponential trends by model year 

describes the data well, despite some patterns that 

appear in the residuals. However, these patterns 

are far less pronounced than those in the residuals 

from the Weibull function. Weighting observations 

by the numbers of vehicles in operation by vehicle 

type, age and calendar year yields a small 

improvements in mean square errors of the logistic 

models, with the noticeable improvements in fits for 

younger vehicles at a cost of somewhat poorer fits 

to vehicles more than 25 years old.  

The results strongly support the following 

descriptive findings: 

1. Conditional scrappage rates are different for 

passenger cars, SUVs and vans, and 

pickup trucks, with pickups having the 

lowest scrappage rates and longest survival 

times. 

2. Over the 2003-2020 period, expected 

lifetimes increased by several years for all 

three vehicle types, although the increase is 

not constant and uniform from one year to 

the next. 

 

3. Light duty vehicles now have expected 

lifetimes of 18-27 years, with potentially 

important implications for public policies that 

regulate new vehicles and rely on stock 

turnover to achieve their full effect. The 

effect of increasing vehicle age for all 

vehicle types has been amplified by the 

increased market share of light trucks. 

4. In addition to the trends towards increasing 

life expectancies, scrappage and survival 

rates vary from year to year, indicating that 

factors such as new vehicle prices, 

macroeconomic variables and other secular 

shocks have important effects on vehicle 

scrappage. 

It is tempting to assume that the calendar year 

effects and trends incorporated in the statistical 

scrappage models represent secular changes in 

prices and economic factors, while the model year 

variables reflect technological changes in vehicle 

durability embodied in the vehicles manufactured in 

a given year. However, vehicle prices may also 

vary by model year for various reasons, including 

content such as luxury accessories that would not 

affect technical durability. Likewise, technological 

change over time might also affect the maintenance 

and repair of vehicles across model years. This 
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study has not attempted to identify the causes of 

changes in vehicle scrappage and survival over 

time but only to describe them. 

Increased vehicle survival rates imply that it will 

take more time to turn over the stock of light duty 

vehicles. From a public policy perspective, it will 

take longer for the benefits of increased fuel 

economy, reduced pollutant emissions and 

improved safety features to achieve their full 

impact. The changes in scrappage rates over the 

past two decades suggest that nearly complete 

replacement of the existing light-duty vehicle stock 

may take 10% to 20% longer today than it would 

have twenty years ago. Whether these trends will 

continue remains is not known, and whether policy 

intervention to accelerate stock turnover would be 

beneficial is an open question. Answering such 

questions will require a better understanding of the 

causes of increased vehicle longevity.  
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APPENDIX A. RESIDUALS FROM WEIBULL MODELS  

Although the estimated Weibull conditional scrappage models produced high adjusted R2 values and generally, 

highly statistically significant coefficient estimates, examination of their residuals plotted against vehicle age 

revealed much more pronounced systematic patterns than are evident in the residuals from the logistic models 

(see Figs. 1-3, above). The patterns clearly indicate that the curvature of the Weibull function periodically 

under- and over-predicts scrappage rates for all three vehicle types. This effect persisted whether or not 

calendar year fixed effects and model year trends were included, and could not be corrected by weighting the 

data, for example by number of vehicles in operation.  The residuals from logistic models show far less 

pronounced systematic lack of fit and have slightly higher R2 values, lower mean squared errors, and improved 

significance levels for estimated coefficients.   
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Figures A1, A2, A3. Residuals vs. Vehicle Age for Weibull Conditional Scrappage Functions with Fixed 

Calendar Year Effects and Calendar Year and Model Year Coefficient Trends. 
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APPENDIX B. RESULTS OF STATISTICAL ESTIMATION OF LOGISTIC 

MODELS  

Passenger Cars 

 

 

Unweighted 

Weighted 
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SUVs and Vans 

 

 

 

 

Unweighted 

Weighted 
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Pickup Trucks 

 

 

 

 

Unweighted 

Weighted 
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APPENDIX C. SCRAPPAGE AND SURVIVAL CURVES BY CALENDAR 

YEAR  

 

Figure C1a. Passenger Car Scrappage Rates vs. Age: Unweighted Data 

 

 

Figure C1b. Passenger Car Scrappage Rates vs. Age: Data Weighted by Vehicles in Operation. 
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Figure C2a. SUV and Van Scrappage Rates vs. Age: Unweighted Data 

 

 

Figure C2b. SUV and Van Scrappage Rates vs. Age: Data Weighted by Vehicles in Operation. 
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Figure C3a. Pickup Truck Scrappage Rates vs. Age: Unweighted Data 

 

 

Figure C3b. Pickup Truck Scrappage Rate vs. Age: Weighted by Vehicles in Operation. 

 

 



25 | V e h i c l e  S c r a p p a g e  a n d  S u r v i v a l  
 
 

 

Figure C4a. Passenger Car Survival Probability Function: Unweighted Data. 

 

 

Figure C4b. Passenger Car Survival Probability Function: Data Weighted by Vehicles in Operation. 
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Figure C5a. SUV and Van Survival Probability Function: Unweighted Data. 

 

 

Figure C5b. SUV and Van Survival Probability Function: Data Weighted by Vehicles in Operation. 
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Figure C6a. Pickup Truck Survival Probability Function: Unweighted Data. 

 

 

Figure C6b. Pickup Truck Survival Probability Function: Data Weighted by Vehicles in Operation. 

 


