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ABSTRACT

This report describes the results of statistical
estimation of models of scrappage rates and
survival probabilities as a function of vehicle age for
U.S. light-duty vehicles. The data used are counts
of vehicles in operation by vehicle type and model
year for calendar years 2002-2020, which allows
scrappage functions to be estimated for years
2003-2020. Models were estimated for three
vehicle types: passenger cars, SUVs and vans, and
pickup trucks. The models are structured to
estimate trends in scrappage and survival rates
over time for each vehicle type. Modified logistic
functions were found to fit the data well, with R?
values of 0.99 and statistically significant trends
and fixed effects for each vehicle type. Results of
estimation via nonlinear least squares indicate that
life expectancies for all three vehicle types
increased over the study period by 2-3 years for
passenger cars, 3-4 years for SUVs and Vans, and
5-6 years for pickup trucks. By 2020, median
expected lifetimes ranged from about 17 years for
passenger cars, and 20 years for SUVs and vans,
to about 25 years for pickup trucks.

INTRODUCTION

Statistical modeling of survival and “time-to-event”
has an extensive literature and range of application
from medicine to engineering (e.g., Hosmer et al.,
2008). Economists and engineers have been
modeling the scrappage rates and survival
probabilities of motor vehicles for more than 50
years. Predicting the speed at which the stock of
motor vehicles will turn over is important to
analyzing the benefits and costs of policies such as

1 The functions assume age is a continuous variable. In
practice, data on vehicles in operation are assigned
integer age values and models typically predict at

promoting deep decarbonization, energy efficiency,
reduced pollutant emissions and vehicle safety.
Early studies were limited by the relatively small
number of ages tracked in available data and the
lack of detailed information about vehicle attributes.
Today, fifty vehicle vintages are reported and
individual vehicles can be identified. The
remainder of this section presents a mathematical
definition of survival and scrappage rate functions.

Survival times and failure rates (scrappage) of
equipment are traditionally modeled by survival and
hazard functions. Let fx(a) be the probability density
function for failure at age a.! The probability of
failure by age a is the integral of fx(a) from 0 to a:

Fe(a; k) =p(X < a) = [ fyCs A k)dx. (1)

The survival function, the probability of surviving to
at least a-years old is Sx(a) = 1-Fx(a). Note that
fx(a) is not the probability of failure (scrappage)
given that the equipment has survived to a-1 but
rather the unconditional probability of failure at time
a. The relative risk of scrappage in an infinitesimally
small time interval after a, given (conditional on)
survival to a is given by the hazard function which
is the ratio of the pdf to the survival function, as
shown in equation 2.

hy(a) =L ;Eg @)

In discrete time, the hazard function is the
probability of scrappage during the time interval a
to a+1 divided by the probability of survival to age
a. The hazard or conditional scrappage function is
not a probability density function because, in
general, it does not integrate to 1 over age, a.

Vehicle survival functions are cumulative probability
density functions that represent the probability of
surviving to a given age, x, for a new vehicle sold in
year t:

pe(x) 3)

The conditional survival probability function (csp f)

represents the probability of a new vehicle surviving
to age x+1, given that a vehicle has survived to age
X. The scrappage rate function is 1 minus the cspf.

discrete intervals. In such cases, the probability mass
function can be substituted for the probability density
function.
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p(x+1]x) (4)

The cumulative survival function is therefore the
cumulative product of the conditional survival
probabilities.

p(x) = p(xlx — Dp(x — 1|x — 2) ..p(1]0)1  (5)

Scrappage rates are estimated by 1 minus the
conditional probability of survival, i.e., one minus
the ratio of the number of x-year-old vehicles in
operation in year t to the number of x-1-year-old
vehicles in operation in year t-1.

_ . 1 n(xt) _ nx-1t-1)-n(x,t)
1 p(xlx 1) =1 n(x-1,t-1) - n(x-1t-1)
(6)

The unconditional survival probability function (the
cumulative survival function) is calculated from the
conditional survival probabilities using equation 5.

This report presents the results of an analysis of
recent trends in survival and scrappage rates for
light-duty vehicles in the U.S. Models are
estimated for three vehicle categories: passenger
cars, SUVs and vans, and pickup trucks. Functions
are estimated for calendar years 2003 to 2020,
over which time the number of age groups
increases from 33 to 50 years. Section Il presents
a review of the literature on vehicle scrappage and
survival, focusing on functional forms and
methodology. Section Il presents the details of the
modified logistic model used in this analysis.
Section IV describes the vehicle population data,
and Section V presents the results of the statistical
estimation, focusing on trends in vehicle longevity.
Section VI discusses the potential implications of
the statistical analysis for public policy and possible
directions for future research.

REVIEW OF VEHICLE
SCRAPPAGE LITERATURE

Previous analyses of automobile scrappage have
used several different functions to model scrappage
as a function of vehicle age or cumulative mileage
with a tendency to prefer Weibull or logistic
functional forms (Engers et al, 2009). Zachariadis
et al. (2001) proposed using the two parameter
Weibull distribution as a function of vehicle age to
model the effect of technological changes in vehicle

emissions over time. Xu and Gao (2019) used three
types of survival models (Kaplan-Meier, exponential
and Weibull) to analyze the relationship between
engine and transmission faults and vehicle survival.
They concluded that vehicle lifetimes had been
increasing due to improved reliability of engines
and transmissions. Kolli et al. (2010) tested Beta,
Gamma, Lognormal and Weibull distributions and
concluded that the Beta and Weibull fit their data
best. In a study of vehicle lifetimes in Japan,
Kagawa et al. (2011) found that likelihood ratio
tests supported use of the generalized gamma
distribution of which the Weibull function is a
special case. A study of vehicle lifetimes in 17
countries did not reject the hypothesis that lifetimes
followed the Weibull distribution (Oguchi and Fuse,
2015).

“Mechanistic” scrappage models estimate
scrappage solely as a function of age or cumulative
miles while “economic” models add equations to
estimate the effects of economic and other factors
that vary over time and space. Mechanistic
conditional scrappage rate (r') models were
estimated by Walker (1968), Parks (1977) and
Greene and Chen (1981). Walker (1968) was the
first to specify a scrappage model comprised of
separate mechanistic and economic equations.
Mechanistic scrappage was estimated as a logistic
function of vehicle age.

1

ri(a) = A+Be—Ba

(7)
Year-to-year changes in the total number of
vehicles scrapped, q, were estimated by a separate
log-linear function of the price of used vehicles, P,
the ratio of new vehicle sales to total stock (the
turnover rate, R), and the aggregated mechanistic
scrappage rate predicted using equation 7, r’,
multiplied by the total stock of vehicles, n.

q: = ARZPPrin, (8)

Parks (1977) imbedded economic factors (x;) in a
logistic scrappage equation, and estimated the logit
of the scrappage rate as a linear function of the
ratio of the price of an a-year-old used car, Py(a,t),
to a price index of repair costs, Pn(t), and the ratio
of the scrappage price of an a-year-old vehicle,
Ps(a,t), to the repair cost index.
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In (—r*(a’t) ) =2jBxj(at) - r(at) =

1-r*(at)
1
14e ZjBjxj@ (9)

Greene and Chen (1981) estimated mechanistic
scrappage models for passenger cars and light
trucks using a modification of Walker’s (1968)
logistic function that included an asymptotic
scrappage rate (A).

1
* _
r (a) ~ A+Be—(BotB1@)

(10)

Based on 1966-77 data with only 12 age groups,
they found significant differences in expected
median lifetimes (9.9 years for cars and 16.4 for
trucks) and asymptotic scrappage rates (cars, 0.29;
trucks, 0.13). Using data on U.S. vehicles in
operation from 1966-1992, Miaou (1995) estimated
an expanded logistic model in which the
exponential function in equation 10 was a function
of socioeconomic variables, including new and
used car prices, as well as age.

Manski and Golding’s (1983) analysis of vehicle
scrappage in Israel appears to be the earliest study
of the combined effects of new and used vehicle
prices on scrappage. Hamilton and Macauley
(1999) divided scrappage effects into an
“‘embodied” durability effect (similar to mechanistic
scrappage) and a “dis-embodied” effect that
included not only economic factors but also the
effect of such things as reduced accident rates.
Beginning with the model of Greene and Chen
(1981) (equation 10), they added a linear equation
that made the coefficient of age, B1, a function of a
set of “disembodied” variables and a set of
“‘embodied” variables. The embodied variables
consisted of model year indicator variables while
the disembodied variables were calendar year
indicators. After removing the first four years of a
model year’s life and any years that implied
negative scrappage rates, they were left with 11
age groups for each of 42 calendar years from
1950 to 1991. Their overall conclusion was that dis-
embodied (calendar year) factors had no effect until
after 1970 but that subsequently vehicle life
expectancy increased substantially. Vintage
specific factors appeared to have little effect but, if
anything, appeared to reduce life expectancy.

Greenspan and Cohen (1999) also modeled
“engineering scrappage” (mechanistic) and “cyclical
scrappage” (economic) separately. Engineering
scrappage was modeled as a function of time and
age. Cyclical scrappage, defined as actual total
scrappage minus estimated engineering
scrappage, was modeled as a linear function of the
unemployment rate and price indexes for new
vehicles, vehicle repairs and gasoline.

Citing an unpublished 2001 study by Schmoyer
using Greenspan and Cohen’s methodology, Davis
et al. (2014) reported scrappage and survival rates
for passenger cars and light trucks of model years
1970, 1980 and 1990. The estimates indicate that
passenger car median survival times increased
from 11.5 years for the 1970 model year to 16.9
years for 1990 model year cars. The study found a
slight decline in light truck median lifetimes, from
16.2 years in 1970 to 15.5 years in 1990.

In early studies, scrappage models were estimated
using aggregate survival rates of large numbers of
vehicles as the dependent variable. Chen and
Niemeier (2005) estimated Weibull scrappage
functions based on individual vehicles randomly
sampled from California’s smog inspection
program. Their model employed a mass point
method that allowed them to estimate the effects of
other variables, such as state of repair and make,
on the probability of survival.

The National Highway Traffic Safety Administration
(NHTSA, 2006) estimated survival functions for
passenger cars and light trucks as a function of age
for use in regulatory analyses. Survival was defined
as the ratio of the number of model year y vehicles
in operation in a given year, t=y+a, where a is
vehicle age, divided by the number in operation in
the year in which that cohort of vehicles was new,
t=y. Thus, NHTSA'’s function is an unconditional
survival function. NHTSA (2006) estimated two-
piece survival functions for passenger cars and
light trucks as a function of age. In equation 9, A
and B are constants to be estimated for cars ten
years old or less (i = 1) and older than ten years (i =
2). For light trucks the breakpoint was put at 12
years.

Aj+Bja

n@=1—e°" ";i=12 (12)
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Li et al. (2009) estimated a logistic scrappage
model using data for 20 U.S. metropolitan areas
that is model and vintage specific for the years
1997-2000 but only market segment specific for
2001-2005. The model and model year detail
permitted the inclusion of seven sets of indicator
variables in addition to gasoline price, fuel
economy, median household income and
household size. The results indicated that when
gasoline prices increased, scrappage rates
decreased for the most efficient 20% of vehicles
and increased for the lower 80% of vehicles.

Scrappage models have been used extensively to
estimate the impacts of accelerated scrappage
policies on vehicle fuel use and emissions. A
review of early studies is provided by Van Wee et
al. (2011). Li and Wei (2013) used a discrete choice
framework to analyze the impacts of the U.S. Cash
for Clunkers program on vehicle scrappage, hew
vehicle demand and emissions. Three variables
were included in the model, vehicle age, fuel
consumption per mile and vehicle type (car vs. light
truck), as well as fixed effects for make of vehicle.
Separate regressions were estimated for the 5-year
scrappage rate from 2001-2005 and the 3-year
scrappage rate from 2006-2008.

Jacobsen and Van Bentham (2015) analyzed
scrappage rates for U.S. vehicles up to 19 years of
age over the period 1999-2009, at the make, model
and trim level. They regressed the logarithms of
scrappage rates on the logarithms of used car
prices and indicator variables comprised of make-
model interacted with age and calendar year
interacted with age. Recognizing the endogeneity
of used car scrappage rates and used car prices,
they substituted an instrumental variables estimate
of used car prices for the actual prices.

Both new and used car prices have been included
among the economic factors affecting scrappage
rates. Recent studies indicate that scrappage is
inelastic with respect to new and used vehicle
prices (Jacobsen et al., 2021) Elasticities of vehicle
scrappage with respect to used car values
estimated by Jacobsen and van Bentham (2015)

2 The similarity of newer and older vehicles’ price
elasticities may be due to the much lower prices of older
vehicles. The elasticities still imply that older vehicles’

ranged from -0.36 for pickups to -0.77 for vans.
Combining all classes together produced an
elasticity estimate of -0.7. Considering only vehicles
aged 10-19, the estimate for all classes combined
was -0.60?, with a range of -0.19 (pickups) to -0.92
(vans) across vehicle classes. A somewhat lower
elasticity, -0.36, was found by Bento et al. (2018)
for U.S. light-duty vehicles over the period 1969-
2014.

Alberini et al. (2018) used a Weibull hazard function
to estimate the effects of emissions taxes on the
scrappage of used vehicles aged 4 to 14 years in
Switzerland. They chose a Weibull hazard function
with A =1 and a proportional hazard model. The
proportional hazard function is convenient for
introducing additional variables, Z, that can affect
scrappage rates besides age or cumulative miles
because it is separable in the influencing variables.

h(x,Z) = hy(x)e?F = kx*~1eZB (12)

Bento et al. (2018) fitted a logistic function to U.S.
vehicle conditional scrappage rates for vehicles up
to 14 years old (e.g., Bento et al., 2018; Greene
and Chen, 1981). Unlike the Weibull hazard
function, the logistic hazard function approaches an
asymptotic scrappage rate (1/L) as age, X,
increases.

1
L+Be=Bx

F(x) = (23)
Bento et al. (2018) assumed that F(x) represented
an “engineering” scrappage rate and that “cyclical”
factors such as used car prices, P, rate of turnover
of vehicle ownership, r, and the number of vehicles
in operation, n, would proportionately affect
scrappage rates.

he(x,2) = aOrtapfntFt(x) (14)

Zheng et al. (2019) estimated the logistic
scrappage model used by Greene and Chen (1981)
to quantify the effects of a change in China’s
mandatory scrappage regulations on the expected
median lifetime of four types of light-duty vehicles.
Lu et al. (2018) used a two-parameter logistic
function to model the survival and scrappage rates

scrappage rates will respond more than newer vehicles’
scrappage rates to an equal dollar reduction in price.
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of eight types of vehicles in China. The authors
note that although vehicle scrappage and survival
rates are normally affected by a number of
parameters, including vehicle age, new vehicle
prices, repair costs, cumulative distance traveled,
fuel prices, emissions regulations, fuel economy
and subsidies, vehicle survival rates in China were
mainly affected by China’s mandatory scrappage
standards. Their analysis is similar to the seminal
work on Chinese vehicle scrappage by Hao et al.
(2011) which employed a Weibull function to model
the evolution of private passenger vehicles,
business passenger vehicles and taxis in China.

Nakamoto et al. (2019) employed Weibull
distributions to represent the cumulative scrappage
functions of 15 countries in an assessment of
lifecycle CO2 emissions. The parameters of the
Weibull functions were taken from an analysis by
Oguchi and Fuse (2015) of data spanning the years
2000-2009. Rith et al. (2020) developed a
simplified method for estimating Weibull survival
functions for developing countries with limited data
on vehicles in operation.

Zaman and Zacour (2020) simulated consumers’
new vehicle purchase and scrappage decisions
under varying incentives to accelerate scrappage
by means of a dynamic programming model®
similar to the optimal replacement model of Baltas
and Xepapadeas (1999). Laborda and Moral (2020)
used a logistic scrappage function to estimate the
effects of accelerated scrappage programs in
Spain. Variables included in the scrappage function
in addition to vehicle age were gross domestic
product, the volume of used sales, roadway
fatalities and injuries, and (0,1) variables
representing different scrappage incentives.

Gohlke and Cribioli (2021) estimated survival
probabilities for light-duty vehicles as a whole and
by powertrain, by comparing new vehicle sales data
by model year to the numbers of vehicles in
operation in calendar year 2021, estimating a
median survival time of 17.6 years. Looking at
individual models, they found that pickup trucks like
the Ford F150 had expected survival times

3 The model assumed a constant maximum vehicle
lifetime and divided consumers into high and low income
groups with different propensities to purchase new and

substantially longer (about 22 years) than sedans
like the Honda Civic (about 18 years). Although
were more limited, they found that hybrid vehicles’
expected median survival times were comparable
to those of all light-duty vehicles (18.3 vs. 17.6
years). With ten or fewer model years of data,
definitive estimates of survival curves for plug-in
and full battery electric vehicles could not be
estimated.

NHTSA (2022) updated a previous (NHTSA, 2008)
logistic model of scrappage as a function of vehicle
age, new and used car prices, fuel prices, fuel
economy, GDP, and other variables.

re(a, x) = —1?27;;; j (15)
Using data on vehicles in operation from 1975-
2017, NHTSA (2022) estimated separate equations
for passenger cars, SUVs and vans and pickup
trucks. Fixed effects were included for model years
to represent trends in vehicle technology, and for
calendar years 2009 and 2010 to represent the
effects of the Great Recession and policies
implemented during those years to accelerate the
retirement of used vehicles. The analysis detected
a trend of increasing vehicle longevity, but noted
that the trend might be affected by the fact that the
number of age categories included in the data
steadily increased over time. The logistic
scrappage function was used for ages up to 30
years. Beyond thirty years of age an “accelerated
decay function” was used to reduce the number of
older vehicles and insure that the total vehicle
counts predicted by the model matched the
historical data.

Despite intense interest in modeling the future
evolution of the stocks of zero emission vehicles,
empirical research has been limited by the lack of
data on modern electric vehicles of sufficient age to
experience significant scrappage. Spangher et al.
(2019) used an agent-based model to simulate the
impact of electric vehicles sales on CO; emissions.
Lacking data on electric vehicles, their model used
logistic scrappage probabilities as a function of age
for five types of light-duty vehicles based on

used vehicles. They calibrated the model using plausible
assumptions rather than historical data and conducted
sensitivity tests on parameter values.
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conventional internal combustion engine vehicles.
Nakamoto et al. (2019) were also unable to
estimate cumulative scrappage functions for
different vehicle types and propulsion systems.
They concluded that “...expanded analysis with a
focus of wide variety of vehicle models is an
important and challenging future work.” (p. 1043)

LOGISTIC SCRAPPAGE MODEL

Review of the literature reveals four general issues
relevant to this analysis of trends in light-duty
vehicle scrappage and survival.

1. The conceptual distinction between
mechanistic vs. economic models

2. Choice of functional form between Weibull
and logistic functions

3. Changes in scrappage and survival rates
over time

4. Differences in scrappage rates among
vehicle types

Vehicle scrappage analyses have long recognized
that although scrappage patterns are most strongly
related to vehicle age and use, economic and other
factors are also important. The concept of
mechanistic scrappage includes wear and tear with
cumulative use and exposure, as well as inherent
durability due to technology embodied in the
vehicle (materials and the quality of design and
manufacture). Economic factors include supply,
demand and prices, design and technological
obsolescence, economic determinants of vehicle
use, maintenance and repair, and public policies.
Because our primary interest is in trends in vehicle
longevity regardless of cause, and trends toward
increased longevity that may continue into the
future, we represent the combined mechanistic and
economic effects with time trend variables and
calendar year and vintage fixed effects. We also
estimate separate functions for three vehicle types:
1) passenger cars, 2) SUVs and vans, and 3)
pickup trucks. Differences among the three vehicle
types found by NHTSA (2022) are clearly evident in
the graphs shown below.

Both Weibull and logistic functional forms have
been widely used in the literature to model
conditional scrappage rates. We estimate both
forms, and both produce statistically highly

significant coefficient estimates and R? values of
0.98 or better. However, we decided in favor of the
logistic function based on analysis of residuals from
the fitted models, as explained in appendix A.

The logistic probability density function (pdf)
provides a flexible basis for constructing a
conditional survival probability function. As noted
above, the conditional survival probability function
(cspf) is not a probability density function and does
not integrate to 1 over the range of ages. Instead, it
describes the probability that a vehicle that has
survived to age x, will also survive to age x+1. The
logistic pdf is shown in equation 1, in which p is the
mean, median and mode of the pdf and o scales
the effect of increasing age on the probability of
survival.

e-G-w/o

fewo) = o —amey: (16)

The pdf can be readily modified to become a cspf
by including a scaling factor, K, (since the cspf
does not integrate to 1) and an asymptotic
scrappage rate, A, to allow the cspf to be
asymmetric, and to allow the possibility that the
probability of survival may not converge toward 0O
within the range of ages in the data. The modified
cspf is shown in equation 17, which has been
rearranged by multiplying numerator and
denominator by e *=#/7

K
(e(x=1)/20 4 o= (x—W)/20)2 4 4

90K, A) = 17)
Equation 17 is static and does not include the fact
that technological advances and economic factors
may change the coefficients of the cspf over time.
To include the effects of changes in economic
factors over time, K is replaced by annual fixed
effects, exp(ad), where a; is a year-specific
constant and d: a year-specific indicator variable,
for t = 2003 to 2020. The possibility of a linear
trend in average age is included by replacing p by
Mo + pit, and o is replace by oo + o1t. Technological
change, on the other hand, is expected to be
incorporated in vehicles predominantly by model
year rather than affecting all ages of vehicles in a
calendar year. This possibility is included by
multiplying centered age, x-y, by exp(By), where y
increases from 0 to 70 as model year increases
from 1950 to 2020.
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DATA

The data used in this analysis are proprietary
counts of light-duty vehicles in operation on
January 1 of each year, in the United States. Use of
the data was purchased from IHS Markit Insight™,
which requires nondisclosure of the data but
permits publication of statistical inferences derived
from it that do not disclose the original counts. The
data were aggregated to make, model, body style
and trim levels by calendar year and model year.
These data were further aggregated into three
vehicle types within each age group, 1) passenger
cars, 2) SUVs, minivans and passenger vans, 3)
pickup trucks. Vehicle age is calculated by
subtracting a vehicle’s model year from the current
calendar year.* For calendar year 2003 there are
33 age groups, and the number of age groups
increases by one each year to 50 age groups in
2020.

When vehicles are new or 1 to 2 years old, it is
common for vehicles in operation data to show
negative scrappage, i.e., an increase in vehicles in
operation. Frequently, the entire production of a
model year is not sold within the first or even
second calendar year. In addition, a new model
year is typically introduced before its corresponding
calendar year. For this reason, the scrappage
functions are estimated using ages 3 and older.

ESTIMATION AND RESULTS

The full cspf model was estimated using the
Stata™ statistical software’s nonlinear least square
routine with the robust standard errors option to
correct for heteroscedasticity and certain types of
misspecification. Models were estimated for three
vehicle types: passenger cars, SUVs and vans, and
pickup trucks, without weighted observations and
with weighting of observations by the number of
vehicles in operation for the respective vehicle type,
age and calendar year. All models achieved
adjusted R? values of 0.99° and all coefficient

4In a few cases of new vehicle registrations, a vehicle’s
model year exceeds the calendar year. We code these
observations as having an age of 0, representing a new
vehicle.

5 R-squared values in nonlinear models can be
misleading. Mean squared error (MSE) is an alternative

estimates of all models were statistically significant
at the 0.0001 level, using the robust standard error
estimates. The detailed results are shown in
Appendix B. Despite the high R? values, patterns in
the residual plots indicate a small remaining lack of
fit for the logistic functional form or possible
misspecification due to omission of explanatory
variables other than age and vintage. There is also
clear evidence of heteroscedasticity, confirming the
appropriateness of using the robust estimation
method (Figures 1-3). As expected, residuals from
the regressions weighted by vehicles in operation
show smaller variance for vehicles up to about 20
years of age, but increased variance for older
vehicles. The residual plots also suggest there may
be a few outliers in the data. Unweighted
scrappage models for passenger cars and pickups
were re-estimated, respectively deleting 2 and 4
seeming outliers. There were small differences in
some estimated coefficients. The results shown in
graphs below and the regression results reported in
Appendix B do not exclude potential outliers, but
include all data points.

Logistic, Multiplicative Fixed Year Effects: PASSCAR

.04

.02

Residuals
0
1
|

-.02

-.04

age

Figure 1a. Residuals from the Full Logistic
Scrappage Model for Passenger Cars

measure of model fit that can be more meaningful.
Similarly parameterized Weibull models had MSE values
that were 7% larger than the logistic model MSEs for
pickups, 46% larger for SUVs and vans, and 51% larger
for passenger cars.
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Residuals from VIO-weighted Regression: PASSCAR Residuals from VIO-weighted Regression: SUVVAN
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Figure 1b. Residuals from Scrappage Model with Figure 2b. Residuals from Scrappage Model with
VIO-Weighted Observations: Passenger Cars. VIO-Weighted Observations: SUVs and Vans.
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Figure 2a. Residuals from the Full Logistic Figure 3a. Residuals from the Full Logistic
Scrappage Model for SUVs and Vans Scrappage Model for Pickup Trucks
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Residuals from VIO-weighted Regression: Pickups

.04

Residuals

age

Figure 3b. Residuals from Scrappage Model with
VIO-Weighted Observations: Pickups.

The conditional survival probability functions for
passenger cars, SUVs and Vans and Pickups for
calendar years 2003, 2011 and 2019 (8-year
intervals) are shown in Figures 4-6.° In the legend,
“W” indicates that the estimates are based on
observations weighted by vehicles in operation.
The weighted estimates are represented by open
squares while the unweighted estimates are
represented by filled circles. Graphs showing all
years can be found in Appendix C. The functions
are strikingly different across the vehicle types. The
passenger car functions are narrower, peak at
conditional scrappage probabilities of 0.16 to 0.21.
The ages at which scrappage probability peaks
have shifted over time towards longer lifetimes. For
passenger cars, the age of maximum scrappage
shifts from p = 19.4 years in 2003 to y = 22.4 in
2020, based on the calendar year logistic
scrappage model coefficients fitted to weighted
data. For SUVs and vans, the increase is from 19.5
years in 2003 to 22.1 years, while pickups show the
largest shift, from 24.4 years in 2003 to 28.2 years

6 The years were chosen to be at equal time intervals,
but also because the 2020 scrappage and survival
functions deviate from the general trend, as can be seen

in 2020. Weighting the data by the numbers of
vehicles in operation by model year and calendar
year increased conditional scrappage rates for
newer vehicles in 2019 and decreased scrappage
rates for older vehicles in 2003.

in Appendix C. The reason for the change in 2020 is not
obvious and suggests the importance of further analysis
to explore the impacts of economic factors.
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Logistic Conditional Scrappage Probabiities: SUVs and Vans

0.20
- e 2003 ©2003W 2011 o©2011W e 2019 ©2019W
5
I_;;u
g 01 s398%e,
S se®8% 5 e
o0 580 H...i.
© [
o S0 ! °
o 0.10 UD E ®
‘G ﬂ‘ . i ®
bl o e ﬁaO
@ e® Qﬂa
c O Qg ™ E !
o i HE@,
= u] ° -
5 005 o ® oHily
b [ ] g e |- !ii |
o E ® 'Y Cog
S ..HDDE ..' iii!ﬂ E?ED
.OEEED.' ....’.o.o .1
ogollli55§-°’. °°
0 5 10 15 20 25 30 35 40 45 50
Vehicle Age

Figure 5. Conditional Scrappage Probability Functions for 2003, 2011 and 2019: SUVs and Vans.

The conditional scrappage functions for pickups are broader still, with even lower peak scrappage rates of
approximately 0.07 to 0.12. Weighting the data caused only minor changes in scrappage probabilities.

Logistic Conditional Scrappage Probabiities: Pickup Trucks
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Figure 6. Conditional Scrappage Probability Functions for 2003, 2011 and 2019: Pickup Trucks.
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The trend toward increasing vehicle lifetimes is also evident in the cumulative survival probability functions
(Figures 7-9). Over the 17-year period from 2003 to 2020, the median expected lifetimes of all vehicle types
increased by several years. For all three vehicle types, functions based on weighted and unweighted data are
very similar, but the 2019 functions for cars and SUVs indicate lower survival rates.

Logistic Cumulative Survival Probabiities: Passenger Cars

1.00 —
."!ﬁ oy
eig_ %
0.90 LR
'.U ° 2003 02003w 2011 2011w 2019 ©201%w
0.80 o%c o
> ol o
2 070 oo
3 ®ogne
5] ..
_Q s
g 0.60 ogC®
o {
= 050 g* e
>
= °
> [ ]
E 0.40 = e
") fo
0.30 U' T
* o
0.20 9| % -0y
| ]
] -2
0.10 ii o‘ ...
. o Ssslee
Sgga’oi Resne PP
. AT T
0 5 10 15 20 25 30 35 40 45 50
Vehicle Age

Figure 7. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: Passenger Cars.

Logistic Cumulative Survival Probabiities: SUVs and Vans
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Figure 8. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: SUVs and Vans.
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Figure 9. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: Pickup Trucks.

The graphs in Figures 4-9 suggest that there has been a steady increase in longevity, year after year.
However, the individual calendar year functions tell a more nuanced story. Changes in the calendar year fixed
effects cause ups and downs in maximum scrappage rates and some deviations from the trend of increasing
longevity, indicating that temporal factors shift the scrappage schedules from one year to the next (Figure 10).
The year-by-year estimates show relatively little change in median expected lifetimes from 2003-2012, with
greater increases from 2013-2020. The full set of cspf curves are shown in Appendix C.

The cumulative survival probability curves for each vehicle type were used to calculate median expected
survival ages by calendar year (Figure 10). The results indicate a period of constant or slowly increasing
median expected lifetimes through about 2010, followed by a more rapid increase through 2020. The data
again indicate that pickup trucks have experienced the greatest increase in life expectancy. However, the data
also reflect notable variation by calendar year, suggesting an important influence of economic factors.
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Trends of Median Expected Survival
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DISCUSSION

The enhanced logistic function with calendar year
fixed effects, linear trends in k, y, o and the
asymptote, and exponential trends by model year
describes the data well, despite some patterns that
appear in the residuals. However, these patterns
are far less pronounced than those in the residuals
from the Weibull function. Weighting observations
by the numbers of vehicles in operation by vehicle
type, age and calendar year yields a small
improvements in mean square errors of the logistic
models, with the noticeable improvements in fits for
younger vehicles at a cost of somewhat poorer fits
to vehicles more than 25 years old.

The results strongly support the following
descriptive findings:

1. Conditional scrappage rates are different for
passenger cars, SUVs and vans, and
pickup trucks, with pickups having the
lowest scrappage rates and longest survival
times.

2. Over the 2003-2020 period, expected
lifetimes increased by several years for all
three vehicle types, although the increase is
not constant and uniform from one year to
the next.

2013

2015 2017 2019

3. Light duty vehicles now have expected
lifetimes of 18-27 years, with potentially
important implications for public policies that
regulate new vehicles and rely on stock
turnover to achieve their full effect. The
effect of increasing vehicle age for all
vehicle types has been amplified by the
increased market share of light trucks.

4. In addition to the trends towards increasing
life expectancies, scrappage and survival
rates vary from year to year, indicating that
factors such as new vehicle prices,
macroeconomic variables and other secular
shocks have important effects on vehicle
scrappage.

It is tempting to assume that the calendar year
effects and trends incorporated in the statistical
scrappage models represent secular changes in
prices and economic factors, while the model year
variables reflect technological changes in vehicle
durability embodied in the vehicles manufactured in
a given year. However, vehicle prices may also
vary by model year for various reasons, including
content such as luxury accessories that would not
affect technical durability. Likewise, technological
change over time might also affect the maintenance
and repair of vehicles across model years. This
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study has not attempted to identify the causes of
changes in vehicle scrappage and survival over
time but only to describe them.

Increased vehicle survival rates imply that it will
take more time to turn over the stock of light duty
vehicles. From a public policy perspective, it will
take longer for the benefits of increased fuel
economy, reduced pollutant emissions and
improved safety features to achieve their full

impact. The changes in scrappage rates over the
past two decades suggest that nearly complete
replacement of the existing light-duty vehicle stock
may take 10% to 20% longer today than it would
have twenty years ago. Whether these trends will
continue remains is not known, and whether policy
intervention to accelerate stock turnover would be
beneficial is an open question. Answering such
guestions will require a better understanding of the
causes of increased vehicle longevity.
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APPENDIX A. RESIDUALS FROM WEIBULL MODELS

Although the estimated Weibull conditional scrappage models produced high adjusted R? values and generally,
highly statistically significant coefficient estimates, examination of their residuals plotted against vehicle age
revealed much more pronounced systematic patterns than are evident in the residuals from the logistic models
(see Figs. 1-3, above). The patterns clearly indicate that the curvature of the Weibull function periodically
under- and over-predicts scrappage rates for all three vehicle types. This effect persisted whether or not
calendar year fixed effects and model year trends were included, and could not be corrected by weighting the
data, for example by number of vehicles in operation. The residuals from logistic models show far less
pronounced systematic lack of fit and have slightly higher R? values, lower mean squared errors, and improved
significance levels for estimated coefficients.
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Weibull Scrappage Fixed Effects + Trend: PICKUP
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Figures Al, A2, A3. Residuals vs. Vehicle Age for Weibull Conditional Scrappage Functions with Fixed
Calendar Year Effects and Calendar Year and Model Year Coefficient Trends.
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APPENDIX B. RESULTS OF STATISTICAL ESTIMATION OF LOGISTIC
MODELS
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SUVs and Vans
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/mut .1131327  .0088358 12.80 0.000 .0957834 .1304819
/a -18.31887 B.166898 -2.24 0.025 -34.35467 -2.283081
/at 3.148626  .6732575 4.68  0.000 1.826678 4.470575
Konlinear regression Kumber of obs = 1087328600
R-sguared = 0.9874
. Bdj R-agquared = 0.9874
Weighted Root MSE = .0065042
Res. dew. = -6.28e+09
Robust

scraprate Coef.  Std. Err, S =Y [95% Conf. Interval

V] 1.567183  .0001146 13675 87  0.000 1.5665959 1.
v 1.604066  .0001084 14801.93  0.000 1.603854 1‘233323
¥ 1.64475  .0001007 16328.82  0.000 1.644553 1.644948
/y6 1.665856  .0000934 17830.64 0.000 1.665673 1.666039
Fyl 1.6B0504  .00008BS 18902.86 0.000 1.68033 1.6B06TE
/yE 1.643548  .0000825 19917.30  0.000 1.643388 1.64371
.fyg 1.660675 .0000727 22858.48 0.000 1.660533 1.660817
{le 1.566659 .0000694 22578.07 0.000 1.566523 1.566795
fyll 1.276221 .000066 18346.11  0.000 1.2760891 1.27635
fyla 1.371517  .0000593 23144.74  0.000 1.371401 1.371633
fyl3 1.38552  .0000532 26045.82  0.000 1.385416 1.385624
fyld 1.296408  .0000464 27858.50  0.000 1.296318 1.206499
f¥l5 1.030941 .0000616 16726.68  0.000 1.03082 1.031062
/ylB 1.062431  .0000314 33806.57 0.000 1.06236% 1.062493
;y}; 1-3:3:0; .0000246 42957.18  0.000 1.0551585 1,055252

¥1i 1.05951 .0000227 46773.27  0.000 .

y19 9037876 _ . : 1.059468 1.059556

20 1.077017  .0000295 36511.96  0.000 1.076958 .
FRt .017388 .000018 963.84 0.000 .0173526 Toggzg;;
/s 11.62954 .002601  4471.11  0.000 11.62444 11.63464
fst 1.418073  .0005633 2517.46  0.000 1.41696% 1.418177
e .0270405  3,.B9e-06 6958.27  0.000 .0270329 .0270481
fmu 19.50744  .0003385 57454.61 0,000 19.50677 15.5081
Jmut .1536504  .0D00232 6632.33  0.000 .153645 .1537358
/a -13.30347 .012537 -1061.13  ©.000 -13.32804 -13.2789

fat -6.368423 .0021059 -3024.13 0000 -6.372551 -6.364296
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Pickup Trucks

Nonlinear regression Number of obs = 676
R-sguared = 0.9914

Adj R-squared = 0.9911

Unweigh Root MSE = .0068325

g ted Res. dev. = =4848.221

T B>t [85% Conf. Interval]

2.164713 .0823989 26.27 0.000 2.002914 2.326513
2.154402 .0790963 27.24 0.000 1.99%088 2.309717
2.144987 .0765365 28.03 0.000 1.994699 2.295275
2.13458 .0743228 28.72 0.000 1.988639 2.280521
2.070868 .0717375 28.87 0.000 1.930003 2.211733
2.008856 .0687382 29.22 0.000 1.87388 2.143831
2.016209 .0665991 30.27 0.000 1.885434 2.146984
1.967523 .063448 31.01 0.000 1.842936 2.092111
1.805697 .0634204 28.47 0.000 1.681164 1.93023
1.845434 .0635089 29.06 0.000 1.720727 1.970142
1.80931 .06495 27.86 0.000 1.681773 1.936846
1.532381 .0525168 29.18 0.000 1.429258 1.635504
1.250057 .0480244 26.03 0.000 1.1557585 1.344358
1.047578 .0408177 25.66 0.000 .9674276 1.127728
1.1015 .0365407 30.14 0.000 1.029748 1.173252
.9853766 .0359148 27.44 0.000 .9148537 1.0559
.6411712 . 4 A i 3
.8271541 .0424905 19.47 0.000 .7437192 .910589
.0380161 .0150688 2.52 0.012 .0084268 .0676055
5.432334 .4731866 11.48 0.000 4.503178 6.36149
.20263086 .0417862 4.85 0.000 .1205787 .2846825
.0086276 .001288 6.70 0.000 .0060984 .0111569
24.87408 .1881148 132.23 0.000 24.50469 25.24346
.2053818 .016225 12.66 0.000 .1735221 .2372416
/a 61.95143  B.214492 7.54 0.000 45.82133 78.08153
/at -3.638056 .4771206 -7.63 0.000 -4.574937 -2.701175
Honlinear regression Number of obs = 703144375
R-sqguared = 0.5891
. Rdj R-sguared = 0.9891
Weighted Root MSE - 0054594
Res. dewv. = -4.8%a+08%
Robust

scraprate Coef. std. Err. t Px|t| [95% Conf. Tnterval]
{ya 2.057575 .0001115 18303.18% 0.000 2.057356 2.057794
/yd 2.028291 .0001072 18901.02  0.000 2.02808 2.028501
/¥5 2.022907 .0001039 15472.16  0.000 2.022704 2.023111
[yi 2.014601 .0001003 20084.65  0.000 2.014405 2.014758
iy 1.895658 L0D00565 20281.81 0.000 1.9563951 1.95677
fyg 1.898603 .0D00826 20503.73 0.000 1.898421 1.898764
fye 1.908201 .0000BS1 21416.13  0.000 1.508B026 1.908375
Fyla 1.872373 L.0000845 22166.71 0.000 1.872207 1.872538
/yll 1.651375 .0000813 20316.02 D.DOO 1.651216 1.651535
fvl2 1.685252 .0000794 21232.36  0.000 1.685096 1.685408
/vl3 1.623292 .0000798 20308.07  0.000 1.623135 1.623448
/vld 1.428288 .0000619 23080.84 0.000 1.4281867 1.428409
/vl5 1.289957 .0D0DE3T7 20250.54 o.o00 1.289832 1.290082
fylé 1.109349 L0DOD441 25162 62 0.000 1.109263 1.108435
vl 1.120451 .D000375 29572.69 0.0a0 1.120377 1.120525
Jyla 1_065883 .000033 3228342 0.000 1.065818 1.065948

/yl9 . 7821686 . . . i
Jy20 .9723553 0000364 26651.74  0.000 6722835 9724267
Jkt .020252 .0000142 1425 54 0.000 .0202241 .0202798
/s 5.720173 .0012878 4441.85 0.000 5.717649 5.722698
/st .2897582 .0001265 2289.%8  0.000 .2BA5102 L2900062
fay .0101763 4.01e=-06 2535.30 0.000 . 0101685 .0101842
Jmu 24.3616 .0DD3699 65853 .60 0.000 24.36088 24.36233
Jfmut .2256228 .00D029%  7535.47 0.000 .2255641 L2256815
fa 48. 6662 .0119304 4058.77 0.000 48.6427 4B8.6897

Jat -3.3237898 0004645 -7179.84 D.000 -3.33881 -3,336987
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APPENDIX C. SCRAPPAGE AND SURVIVAL CURVES BY CALENDAR
YEAR

Logistic Conditional Scrappage Probabilites: Passenger Cars
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Figure Cla. Passenger Car Scrappage Rates vs. Age: Unweighted Data
Weighted Logistic Conditional Scrappage Probabilites: Passenger Cars
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Figure C1b. Passenger Car Scrappage Rates vs. Age: Data Weighted by Vehicles in Operation.

22|Vehicle Scrappage and Survival



Logistic Conditional Scrappage Probabilites: SUV & Vans
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Figure C2a. SUV and Van Scrappage Rates vs. Age: Unweighted Data

Weighted Logistic Conditional Scrappage Probabilites: SUV & Vans
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Figure C2b. SUV and Van Scrappage Rates vs. Age: Data Weighted by Vehicles in Operation.
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Logistic Conditional Scrappage Probabilites: Pickups
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Figure C3a. Pickup Truck Scrappage Rates vs. Age: Unweighted Data

Weighted Logistic Conditional Scrappage Probabilites: Pickups
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Figure C3b. Pickup Truck Scrappage Rate vs. Age: Weighted by Vehicles in Operation.
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Logistic Unconditional Survival Probabilites: Passenger Cars
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Figure C4a. Passenger Car Survival Probability Function: Unweighted Data.

WEIGHTED Logistic Unconditional Survival Probabilites: Passenger Cars
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Figure C4b. Passenger Car Survival Probability Function: Data Weighted by Vehicles in Operation.
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Logistic Unconditional Survival Probabilites: SUVs and Vans
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Figure C5a. SUV and Van Survival Probability Function: Unweighted Data.

WEIGHTED Logistic Unconditional Survival Probabilites: SUVs and Vans
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Figure C5b. SUV and Van Survival Probability Function: Data Weighted by Vehicles in Operation.
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Logistic Unconditional Survival Probabilites: Pickups
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Figure C6a. Pickup Truck Survival Probability Function: Unweighted Data.
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Figure C6b. Pickup Truck Survival Probability Function: Data Weighted by Vehicles in Operation.
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