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ABSTRACT 
We estimate models of scrappage rates and survival probabilities as a function of vehicle age 
for U.S. light-duty vehicles. We use counts of vehicles in operation by vehicle type and model 
year for calendar years 2002-2020, which allows us to estimate scrappage functions for years 
2003-2020. We estimate models for three vehicle types: passenger cars, SUVs and vans, and 
pickup trucks. We found that modified logistic functions fit the data well for each vehicle type. 
Results of estimation via nonlinear least squares indicate that life expectancies for all three 
vehicle types increased over the study period by 2-3 years for passenger cars, 3-4 years for 
SUVs and Vans, and 5-6 years for pickup trucks. By 2020, median expected lifetimes ranged 
from about 17 years for passenger cars, and 20 years for SUVs and vans, to about 25 years for 
pickup trucks. A review of historical trends in the life expectancies of U.S. light-duty vehicles 
indicates they have been increasing by 0.5% to 1% per year for over 50 years. We develop a 
method for projecting future survival functions by extrapolating from our estimated survival 
functions. Our findings have significant implications for policies geared toward reducing fuel use 
and greenhouse gas emissions.  

  



TABLE OF CONTENTS 
 

I. Introduction 

II. Review of Vehicle Scrappage Literature 

III. The Logistic Scrappage Model 

IV. Data 

V. Estimation of Models with Time Trends 

VI. Historical Trends in Vehicle Longevity 

VII. Projecting Future Survival Functions 

VIII. Discussion 

Appendix A. Residuals from Weibull Models 

Appendix B. Results of Statistical Estimation of Logistic Models with Time Trends 

Appendix C. Scrappage and Survival Curves from Time Trends Models by Calendar Year 

Appendix D. Results of Statistical Estimation of Calendar Year Scrappage Models 

  



 

I. INTRODUCTION  
Statistical modeling of survival and “time-to-event” has an extensive literature and range of 
application from medicine to engineering (e.g., Hosmer et al., 2008). Economists and engineers 
have been modeling scrappage rates and survival probabilities of automobiles for more than 50 
years. Predicting the speed at which the stock of motor vehicles will turn over is important to 
analyzing the benefits and costs of policies such as promoting deep decarbonization, energy 
efficiency, reduced pollutant emissions and vehicle safety. Early studies were limited by the 
relatively small number of ages tracked in available data and the lack of detailed information 
about vehicle attributes. Today, fifty vehicle vintages are reported, and individual vehicles can 
be identified. The remainder of this section presents a mathematical definition of survival and 
scrappage rate functions.   

Survival times and failure rates (scrappage) of equipment are traditionally modeled by survival 
and hazard functions. Let fX(a) be the probability density function for failure at age a.3 The 
probability of failure by age a is the integral of fX(a) from 0 to a: 

 𝐹𝐹𝑋𝑋(𝑎𝑎; 𝜆𝜆,𝑘𝑘) = 𝑝𝑝(𝑋𝑋 ≤ 𝑎𝑎) = ∫ 𝑓𝑓𝑋𝑋(𝑥𝑥; 𝜆𝜆,𝑘𝑘)𝑑𝑑𝑥𝑥𝑎𝑎
0 .   (1) 

The survival function, the probability of surviving to at least a-years old is SX(a) = 1-FX(a). Note 
that fX(a) is not the probability of failure (scrappage) given that the equipment has survived to 
aga a-1 but rather the unconditional probability of failure at time a. The relative risk of scrappage 
in an infinitesimally small time interval after a, given (conditional on) survival to a is given by the 
hazard function which is the ratio of the pdf to the survival function, as shown in equation (2). 

     ℎ𝑋𝑋(𝑎𝑎) = 𝑓𝑓𝑋𝑋(𝑎𝑎)
𝑆𝑆𝑋𝑋(𝑎𝑎)      (2) 

In discrete time, the hazard function is the probability of scrappage during the time interval a to 
a+1 divided by the probability of survival to age a. The hazard or conditional scrappage function 
is not a probability density function because, in general, it does not integrate to 1 over the range 
of age, a. 

Vehicle survival functions are cumulative probability density functions that represent the 
probability of surviving to a given age, x, for a new vehicle sold in year t:  

𝑝𝑝𝑡𝑡(𝑥𝑥)      (3) 

The conditional survival probability function (cspf) represents the probability of a new vehicle 
surviving to age x+1, given that a vehicle has survived to age x.  The scrappage rate function is 
1 minus the cspf. 

𝑝𝑝(𝑥𝑥 + 1 | 𝑥𝑥)     (4) 

 
3 The functions assume age is a continuous variable. In practice, data on vehicles in operation are 
assigned integer age values and models typically predict at discrete intervals. In such cases, the 
probability mass function can be substituted for the probability density function. 



The cumulative survival function is therefore the cumulative product of the conditional survival 
probabilities. 

𝑝𝑝(𝑥𝑥) = 𝑝𝑝(𝑥𝑥|𝑥𝑥 − 1)𝑝𝑝(𝑥𝑥 − 1|𝑥𝑥 − 2) … 𝑝𝑝(1|0)1    (5) 

Scrappage rates are estimated by 1 minus the conditional probability of survival, i.e., one minus 
the ratio of the number of x-year-old vehicles in operation in year t to the number of x-1-year-old 
vehicles in operation in year t-1. 

1 − 𝑝𝑝(𝑥𝑥|𝑥𝑥 − 1) = 1 − 𝑛𝑛(𝑥𝑥,𝑡𝑡)
𝑛𝑛(𝑥𝑥−1,𝑡𝑡−1)

= 𝑛𝑛(𝑥𝑥−1,𝑡𝑡−1)−𝑛𝑛(𝑥𝑥,𝑡𝑡)
𝑛𝑛(𝑥𝑥−1,𝑡𝑡−1)

   (6) 

The unconditional survival probability function (the cumulative survival function) is calculated 
from the conditional survival probabilities using equation (5). 

This report presents the results of an analysis of recent trends in survival and scrappage rates 
for light-duty vehicles in the U.S. Models are estimated for three vehicle categories: 1) 
passenger cars, 2) SUVs and vans, and 3) pickup trucks. Functions are estimated for calendar 
years 2003 to 2020, over which time the number of age groups in the available data increases 
from 33 to 50 years. Section II presents a review of the literature on vehicle scrappage and 
survival, focusing on functional forms and methodology. Section III presents the details of the 
modified logistic model used in this analysis. Section IV describes the vehicle population data, 
and Section V presents the results of the statistical estimation of trends in vehicle longevity.  
Section VI reviews published studies that have estimated historical trends in vehicle longevity 
using data going back to 1958. Section VII presents a method for extrapolating survival models 
to predict future survival rates. Section VIII discusses the potential implications of the statistical 
analysis for public policy and possible directions for future research. 

 

II. REVIEW OF VEHICLE SCRAPPAGE LITERATURE  
Previous analyses of automobile scrappage have used several different functions to model 
scrappage as a function of vehicle age or cumulative mileage with a tendency to prefer Weibull 
or logistic functional forms (Engers et al, 2009). Zachariadis et al. (2001) proposed using the 
two parameter Weibull distribution as a function of vehicle age to model the effect of 
technological changes in vehicle emissions over time. Xu and Gao (2019) used three types of 
survival models (Kaplan-Meier, exponential and Weibull) to analyze the relationship between 
engine and transmission faults and vehicle survival. They concluded that vehicle lifetimes had 
been increasing due to improved reliability of engines and transmissions. Kolli et al. (2010) 
tested Beta, Gamma, Lognormal and Weibull distributions and concluded that the Beta and 
Weibull fit their data best. In a study of vehicle lifetimes in Japan, Kagawa et al. (2011) found 
that likelihood ratio tests supported use of the generalized gamma distribution of which the 
Weibull function is a special case. A study of vehicle lifetimes in 17 countries did not reject the 
hypothesis that lifetimes followed the Weibull distribution (Oguchi and Fuse, 2015).  

“Mechanistic” scrappage models estimate scrappage solely as a function of age or cumulative 
miles while “economic” models add equations to estimate the effects of economic and other 
factors that vary over time and space. Mechanistic conditional scrappage rate (r*) models were 
estimated by Walker (1968), Parks (1977) and Greene and Chen (1981). Walker (1968) was the 



first to specify a scrappage model comprised of separate mechanistic and economic equations. 
Mechanistic scrappage was estimated as a logistic function of vehicle age. 

𝑟𝑟∗(𝑎𝑎) = 1
𝐴𝐴+𝐵𝐵𝑒𝑒−𝛽𝛽𝛽𝛽

      (7) 

Year-to-year changes in the total number of vehicles scrapped, 𝑞𝑞𝑡𝑡, were estimated by a 
separate log-linear function of the price of used vehicles, 𝑃𝑃𝑡𝑡, the ratio of new vehicle sales to 
total stock (the turnover rate, 𝑅𝑅𝑡𝑡), and the aggregated mechanistic scrappage rate predicted 
using equation 7, 𝑟𝑟𝑡𝑡∗, multiplied by the total stock of vehicles, 𝑛𝑛𝑡𝑡: 

𝑞𝑞𝑡𝑡 = 𝐴𝐴𝑅𝑅𝑡𝑡𝛼𝛼𝑃𝑃𝑡𝑡
𝛽𝛽𝑟𝑟𝑡𝑡∗𝑛𝑛𝑡𝑡     (8) 

Parks (1977) imbedded economic factors (xj) in a logistic scrappage equation, and estimated 
the logit of the scrappage rate as a linear function of the ratio of the price of an a-year-old used 
car, Pu(a,t), to a price index of repair costs, Pm(t), and the ratio of the scrappage price of an a-
year-old vehicle, Ps(a,t), to the repair cost index. 

𝑙𝑙𝑛𝑛 � 𝑟𝑟∗(𝑎𝑎,𝑡𝑡)
1−𝑟𝑟∗(𝑎𝑎,𝑡𝑡)

� = ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗(𝑎𝑎, 𝑡𝑡)  →  𝑟𝑟∗(𝑎𝑎, 𝑡𝑡) = 1

1+𝑒𝑒−∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑗𝑗(𝛽𝛽,𝑡𝑡)𝑗𝑗𝑗𝑗    (9) 

Greene and Chen (1981) estimated mechanistic scrappage models for passenger cars and light 
trucks using a modification of Walker’s (1968) logistic function that included an asymptotic 
scrappage rate (A):  

𝑟𝑟∗(𝑎𝑎) = 1
𝐴𝐴+𝐵𝐵𝑒𝑒−(𝛽𝛽0+𝛽𝛽1𝛽𝛽)      (10) 

Based on 1966-77 data with only 12 age groups, they found significant differences in expected 
median lifetimes (9.9 years for cars and 16.4 for trucks) and asymptotic scrappage rates (cars, 
0.29; trucks, 0.13). Using data on U.S. vehicles in operation from 1966-1992, Miaou (1995) 
estimated an expanded logistic model in which the exponential function in equation 10 was a 
function of socioeconomic variables, including new and used car prices, as well as age. 

Manski and Golding’s (1983) analysis of vehicle scrappage in Israel appears to be the earliest 
study of the combined effects of new and used vehicle prices on scrappage. Hamilton and 
Macauley (1999) divided scrappage effects into an “embodied” durability effect (similar to 
mechanistic scrappage) and a “dis-embodied” effect that included not only economic factors but 
also the effect of such things as reduced accident rates. Beginning with the model of Greene 
and Chen (1981) (equation 10), they added a linear equation that made the coefficient of age, 
β1, a function of a set of “disembodied” variables and a set of “embodied” variables. The 
embodied variables consisted of model year indicator variables while the disembodied variables 
were calendar year indicators. After removing the first four years of a model year’s life and any 
years that implied negative scrappage rates, they were left with 11 age groups for each of 42 
calendar years from 1950 to 1991. Their overall conclusion was that dis-embodied (calendar 
year) factors had no effect until after 1970 but that subsequently vehicle life expectancy 
increased substantially. Vintage specific factors appeared to have little effect but, if anything, 
appeared to reduce life expectancy. 

Greenspan and Cohen (1999) also modeled “engineering scrappage” (mechanistic) and 
“cyclical scrappage” (economic) separately. Engineering scrappage was modeled as a function 
of time and age. Cyclical scrappage, defined as actual total scrappage minus estimated 



engineering scrappage, was modeled as a linear function of the unemployment rate and price 
indexes for new vehicles, vehicle repairs and gasoline. 

Citing an unpublished 2001 study by Schmoyer using Greenspan and Cohen’s methodology, 
Davis et al. (2014) reported scrappage and survival rates for passenger cars and light trucks of 
model years 1970, 1980 and 1990.  The estimates indicate that passenger car median survival 
times increased from 11.5 years for the 1970 model year to 16.9 years for 1990 model year 
cars. The study found a slight decline in light truck median lifetimes, from 16.2 years in 1970 to 
15.5 years in 1990. The decline is likely due to the changing nature of light trucks over that 
period, as discussed further below. 

In early studies, scrappage models were estimated using aggregate survival rates of large 
numbers of vehicles as the dependent variable. Chen and Niemeier (2005) estimated Weibull 
scrappage functions based on individual vehicles randomly sampled from California’s smog 
inspection program. Their model employed a mass point method that allowed them to estimate 
the effects of other variables, such as state of repair and make, on the probability of survival.  

The National Highway Traffic Safety Administration (NHTSA, 2006) estimated survival functions 
for passenger cars and light trucks as a function of age for use in regulatory analyses. Survival 
was defined as the ratio of the number of model year y vehicles in operation in a given year, 
t=y+a, where a is vehicle age, divided by the number in operation in the year in which that 
cohort of vehicles was new, t=y. Thus, NHTSA’s function is an unconditional survival function. 
NHTSA (2006) estimated two-piece survival functions for passenger cars and light trucks as a 
function of age. In equation 11, A and B are constants to be estimated for cars ten years old or 
less (i = 1) and older than ten years (i = 2). For light trucks the breakpoint was put at 12 years. 

𝑟𝑟𝑣𝑣(𝑎𝑎) = 1 − 𝑒𝑒−𝑒𝑒𝐴𝐴𝑖𝑖+𝐵𝐵𝑖𝑖𝛽𝛽 ; 𝑖𝑖 = 1,2    (11) 

Li et al. (2009) estimated a logistic scrappage model using data for 20 U.S. metropolitan areas 
that is model and vintage specific for the years 1997-2000 but only market segment specific for 
2001-2005. The model and model year detail permitted the inclusion of seven sets of indicator 
variables in addition to gasoline price, fuel economy, median household income and household 
size. The results indicated that when gasoline prices increased, scrappage rates decreased for 
the most efficient 20% of vehicles and increased for the lower 80% of vehicles. 

Scrappage models have been used extensively to estimate the impacts of accelerated 
scrappage policies on vehicle fuel use and emissions. A review of early studies is provided by 
Van Wee et al. (2011). Li and Wei (2013) used a discrete choice framework to analyze the 
impacts of the U.S. Cash for Clunkers program on vehicle scrappage, new vehicle demand and 
emissions. Three variables were included in the model, vehicle age, fuel consumption per mile 
and vehicle type (car vs. light truck), as well as fixed effects for make of vehicle. Separate 
regressions were estimated for the 5-year scrappage rate from 2001-2005 and the 3-year 
scrappage rate from 2006-2008.  

Jacobsen and Van Bentham (2015) analyzed scrappage rates for U.S. vehicles up to 19 years 
of age over the period 1999-2009, at the make, model and trim level. They regressed the 
logarithms of scrappage rates on the logarithms of used car prices and indicator variables 
comprised of make-model interacted with age and calendar year interacted with age. 
Recognizing the endogeneity of used car scrappage rates and used car prices, they substituted 
an instrumental variables estimate of used car prices for the actual prices.  



Both new and used car prices have been included among the economic factors affecting 
scrappage rates. Recent studies indicate that scrappage is inelastic with respect to new and 
used vehicle prices (Jacobsen et al., 2021). Elasticities of vehicle scrappage with respect to 
used car values estimated by Jacobsen and van Bentham (2015) ranged from -0.36 for pickups 
to -0.77 for vans. Combining all classes together produced an elasticity estimate of -0.7. 
Considering only vehicles aged 10-19, the estimate for all classes combined was -0.604, with a 
range of -0.19 (pickups) to -0.92 (vans) across vehicle classes. A somewhat lower elasticity, -
0.36, was found by Bento et al. (2018) for U.S. light-duty vehicles over the period 1969-2014.  

Alberini et al. (2018) used a Weibull hazard function to estimate the effects of emissions taxes 
on the scrappage of used vehicles aged 4 to 14 years in Switzerland. They chose a Weibull 
hazard function with λ =1 and a proportional hazard model. The proportional hazard function is 
convenient for introducing additional variables, Z, that can affect scrappage rates besides age 
or cumulative miles because it is separable in the influencing variables.  

ℎ(𝑥𝑥,𝑍𝑍) = ℎ0(𝑥𝑥)𝑒𝑒𝒁𝒁𝛽𝛽 = 𝑘𝑘𝑥𝑥𝑘𝑘−1𝑒𝑒𝐙𝐙𝛽𝛽   (12) 

Bento et al. (2018) fitted a logistic function to U.S. vehicle conditional scrappage rates for 
vehicles up to 14 years old. Unlike the Weibull hazard function, the logistic hazard function 
approaches an asymptotic scrappage rate (1/L) as age, x, increases. 

     𝐹𝐹(𝑥𝑥) = 1
𝐿𝐿+𝐵𝐵𝑒𝑒−𝛽𝛽𝑥𝑥

      (13) 

Bento et al. (2018) assumed that F(x) represented an “engineering” scrappage rate and that 
“cyclical” factors such as used car prices, P, rate of turnover of vehicle ownership, r, and the 
number of vehicles in operation, n, would proportionately affect scrappage rates: 

ℎ𝑡𝑡(𝑥𝑥,𝑍𝑍) = 𝛼𝛼0𝑟𝑟𝑡𝑡𝛼𝛼𝑝𝑝𝑡𝑡
𝛽𝛽𝑛𝑛𝑡𝑡𝐹𝐹𝑡𝑡(𝑥𝑥)     (14) 

Zheng et al. (2019) estimated the logistic scrappage model used by Greene and Chen (1981) to 
quantify the effects of a change in China’s mandatory scrappage regulations on the expected 
median lifetime of four types of light-duty vehicles. Lu et al. (2018) used a two-parameter logistic 
function to model the survival and scrappage rates of eight types of vehicles in China. The 
authors note that although vehicle scrappage and survival rates are normally affected by a 
number of parameters, including vehicle age, new vehicle prices, repair costs, cumulative 
distance traveled, fuel prices, emissions regulations, fuel economy and subsidies, vehicle 
survival rates in China were mainly affected by China’s mandatory scrappage standards. Their 
analysis is similar to the seminal work on Chinese vehicle scrappage by Hao et al. (2011) which 
employed a Weibull function to model the evolution of private passenger vehicles, business 
passenger vehicles and taxis in China. 

Nakamoto et al. (2019) employed Weibull distributions to represent the cumulative scrappage 
functions of 15 countries in an assessment of lifecycle CO2 emissions. The parameters of the 
Weibull functions were taken from an analysis by Oguchi and Fuse (2015) of data spanning the 

 
4 The similarity of newer and older vehicles’ price elasticities may be due to the much lower prices of older 
vehicles. The elasticities still imply that older vehicles’ scrappage rates will respond more than newer 
vehicles’ scrappage rates to an equal dollar reduction in price. 



years 2000-2009.  Rith et al. (2020) developed a simplified method for estimating Weibull 
survival functions for developing countries with limited data on vehicles in operation. 

Zaman and Zacour (2020) simulated consumers’ new vehicle purchase and scrappage 
decisions under varying incentives to accelerate scrappage by means of a dynamic 
programming model5 similar to the optimal replacement model of Baltas and Xepapadeas 
(1999). Laborda and Moral (2020) used a logistic scrappage function to estimate the effects of 
accelerated scrappage programs in Spain. Variables included in the scrappage function in 
addition to vehicle age were gross domestic product, the volume of used sales, roadway 
fatalities and injuries, and (0,1) variables representing different scrappage incentives. 

Gohlke and Cribioli (2021) estimated survival probabilities for light-duty vehicles as a whole and 
by powertrain, by comparing new vehicle sales data by model year to the numbers of vehicles in 
operation in calendar year 2021, estimating a median survival time of 17.6 years. Looking at 
individual models, they found that pickup trucks like the Ford F150 had expected survival times 
substantially longer (about 22 years) than sedans like the Honda Civic (about 18 years). 
Although the years of data available were more limited, they found that hybrid vehicles’ 
expected median survival times were comparable to those of all light-duty vehicles (18.3 vs. 
17.6 years). With ten or fewer model years of data, definitive estimates of survival curves for 
plug-in and full battery electric vehicles could not be estimated. 

NHTSA (2022) updated a previous (NHTSA, 2008) logistic model of scrappage as a function of 
vehicle age, new and used car prices, fuel prices, fuel economy, GDP, and other variables. 

𝑙𝑙𝑛𝑛 � 𝑟𝑟𝑡𝑡(𝑎𝑎,𝒙𝒙)
1−𝑟𝑟𝑡𝑡(𝑎𝑎,𝒙𝒙)� = ∑ 𝛽𝛽𝑗𝑗𝑥𝑥𝑡𝑡𝑗𝑗𝑗𝑗     (15) 

Using data on vehicles in operation from 1975-2017, NHTSA (2022) estimated separate 
equations for passenger cars, SUVs and vans and pickup trucks.  Fixed effects were included 
for model years to represent trends in vehicle technology, and for calendar years 2009 and 
2010 to represent the effects of the Great Recession and policies implemented during those 
years to accelerate the retirement of used vehicles. The analysis detected a trend of increasing 
vehicle longevity, but noted that the trend might be affected by the fact that the number of age 
categories included in the data steadily increased over time.  The logistic scrappage function 
was used for ages up to 30 years.  Beyond thirty years of age an “accelerated decay function” 
was used to reduce the number of older vehicles and insure that the total vehicle counts 
predicted by the model matched the historical data.  

Despite intense interest in modeling the future evolution of the stocks of zero emission vehicles, 
empirical research has been limited by the lack of data on modern electric vehicles of sufficient 
age to experience significant scrappage. Spangher et al. (2019) used an agent-based model to 
simulate the impact of electric vehicles sales on CO2 emissions. Lacking data on electric 
vehicles, their model used logistic scrappage probabilities as a function of age for five types of 
light-duty vehicles based on conventional internal combustion engine vehicles. Nakamoto et al. 
(2019) were also unable to estimate cumulative scrappage functions for different vehicle types 

 
5 The model assumed a constant maximum vehicle lifetime and divided consumers into high and low 
income groups with different propensities to purchase new and used vehicles. They calibrated the model 
using plausible assumptions rather than historical data and conducted sensitivity tests on parameter 
values. 



and propulsion systems. They concluded that “…expanded analysis with a focus of wide variety 
of vehicle models is an important and challenging future work.” (p. 1043) 

 

III. THE LOGISTIC SCRAPPAGE MODEL  
The review of the literature reveals four general issues relevant to this analysis of trends in light-
duty vehicle scrappage and survival.  

1. The conceptual distinction between mechanistic vs. economic models 
2. Choice of functional form between Weibull and logistic functions 
3. Changes in scrappage and survival rates over time 
4. Differences in scrappage rates among vehicle types 

Vehicle scrappage analyses have long recognized that although scrappage patterns are most 
strongly related to vehicle age and use, economic and other factors are also important. The 
concept of mechanistic scrappage includes wear and tear with cumulative use and exposure, as 
well as inherent durability due to technology embodied in the vehicle (materials and the quality 
of design and manufacture).  Economic factors include supply, demand and prices, design and 
technological obsolescence, economic determinants of vehicle use, maintenance and repair, 
and public policies. Because our primary interest is in trends in vehicle longevity regardless of 
cause, and trends toward increased longevity that may continue in the future, we represent the 
combined mechanistic and economic effects with time trend variables and calendar year and 
vintage fixed effects. We also estimate separate functions for three vehicle types: 1) passenger 
cars, 2) SUVs and vans, and 3) pickup trucks.  Differences among the three vehicle types found 
by NHTSA (2022) are clearly evident in the graphs shown below. 

Both Weibull and logistic functional forms have been widely used in the literature to model 
conditional scrappage rates. We estimate both forms, and both produce statistically highly 
significant coefficient estimates and R2 values of 0.98 or better. However, we decided in favor of 
the logistic function based on analysis of residuals from the fitted models, as explained in 
appendix A.  

The logistic probability density function (pdf) provides a flexible basis for constructing a 
conditional survival probability function. As noted above, the conditional survival probability 
function (cspf) is not a probability density function and does not integrate to 1 over the range of 
ages. Instead, it describes the probability that a vehicle that has survived to age x, will also 
survive to age x+1. The logistic pdf is shown in equation 1, in which μ is the mean, median and 
mode of the pdf and σ scales the effect of increasing age on the probability of survival. 

𝑓𝑓(𝑥𝑥;𝜇𝜇,𝜎𝜎) =  𝑒𝑒−(𝑥𝑥−𝜇𝜇)/𝜎𝜎

𝜎𝜎(1+𝑒𝑒−(𝑥𝑥−𝜇𝜇)/𝜎𝜎)2
    (16) 

The pdf can be readily modified to become a cspf by including a scaling factor, K, (since the 
cspf does not integrate to 1) and an asymptotic scrappage rate, A, to allow the cspf to be 
asymmetric, and to allow the possibility that the probability of survival may not converge toward 
0 within the range of ages in the data. The modified cspf is shown in equation 17, which has 
been rearranged by multiplying numerator and denominator by 𝑒𝑒(𝑥𝑥−𝜇𝜇)/𝜎𝜎. 



𝑔𝑔(𝑥𝑥; 𝜇𝜇,𝜎𝜎,𝐾𝐾,𝐴𝐴) =  𝐾𝐾
(𝑒𝑒(𝑥𝑥−𝜇𝜇)/2𝜎𝜎+𝑒𝑒−(𝑥𝑥−𝜇𝜇)/2𝜎𝜎)2+𝐴𝐴

   (17) 

Equation 17 is static and does not include the fact that technological advances and economic 
factors may change the coefficients of the cspf over time. To include the effects of changes in 
economic factors over time, K is replaced by calendar year fixed effects, Kt = exp(atdt), where at 
is a year-specific constant to be estimated and dt is a year-specific indicator variable, for  t = 
2003 to 2020. The possibility of a linear trend in average age is included by replacing μ by μ0 + 
μ1t, and σ is replaced by σ0 + σ1t to allow the dispersion of the scrappage functions to change 
over time. Technological change, on the other hand, is expected to be incorporated in vehicles 
predominantly by model year rather than affecting all ages of vehicles in a calendar year. This 
possibility is included by multiplying centered age, x-μ, by exp(βy), where y increases from 0 to 
70 as model year increases from 1950 to 2020.  

 

IV. DATA 
The data used in this analysis are proprietary counts of light-duty vehicles in operation on 
January 1 of each year, in the United States. Use of the data was purchased from IHS Markit 
Insight™, which requires nondisclosure of the data but permits publication of statistical 
inferences derived from it that do not disclose the original counts. The data were aggregated to 
make, model, body style and trim levels by calendar year and model year. These data were 
further aggregated into three vehicle types within each age group, 1) passenger cars, 2) SUVs, 
minivans and passenger vans, 3) pickup trucks. Vehicle age is calculated by subtracting a 
vehicle’s model year from the current calendar year.6 For calendar year 2003, there are 33 age 
groups, and the number of age groups increases by one each year to 50 age groups in 2020. 

When vehicles are new or 1 to 2 years old, it is common for vehicles in operation data to show 
negative scrappage, i.e., an increase in vehicles in operation. Frequently, the entire production 
of a model year is not sold within the first or even second calendar year. In addition, a new 
model year is typically introduced before its corresponding calendar year. For this reason, the 
scrappage functions are estimated using ages 3 and older.  

 

V. ESTIMATION OF MODELS WITH TIME TRENDS  
The full time-trend cspf model was estimated using the Stata™ statistical software’s nonlinear 
least square routine with the robust standard errors option to correct for heteroscedasticity and 
certain types of mis-specification. Models were estimated for three vehicle types: passenger 
cars, SUVs and vans, and pickup trucks, without weighted observations and with weighting of 
scrappage rates by the number of vehicles in operation for the respective vehicle type, age and 
calendar year. All models achieved adjusted R2 values of 0.99 and all coefficient estimates of all 
models were statistically significant at the 0.0001 level, using the robust standard error 

 
6 In a few cases of new vehicle registrations, a vehicle’s model year exceeds the calendar year. We code 
these observations as having an age of 0, representing a new vehicle.  



estimates.7 The detailed results for models including time trended parameters and calendar 
year fixed effects are shown in Appendix B. Despite the high R2 values, patterns in the residual 
plots indicate a small remaining lack of fit for the logistic functional form or possible 
misspecification due to omission of explanatory variables other than age and vintage. There is 
also clear evidence of heteroscedasticity, confirming the appropriateness of using the robust 
estimation method (Figures 1-3). As expected, residuals from the regressions weighted by 
vehicles in operation show smaller variance for vehicles up to about 20 years of age, but 
increased variance for older vehicles. The residual plots also suggest there may be a few 
outliers in the data. Unweighted scrappage models for passenger cars and pickups were re-
estimated, respectively deleting 2 and 4 seeming outliers. There were small differences in some 
estimated coefficients. The results shown in graphs below and the regression results reported in 
Appendix B do not exclude potential outliers, but include all data points. 

 

Figure 1a. Residuals from the Full Logistic Scrappage Model for Passenger Cars 

 

 
7 R-squared values in nonlinear models can be misleading. Mean squared error (MSE) is an alternative 
measure of model fit that can be more meaningful. Similarly parameterized Weibull models had MSE 
values that were 7% larger than the logistic model MSEs for pickups, 46% larger for SUVs and vans, and 
51% larger for passenger cars.  
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Figure 1b. Residuals from Scrappage Model with VIO-Weighted Observations: Passenger Cars. 

 

 

Figure 2a. Residuals from the Full Logistic Scrappage Model for SUVs and Vans 

 

 

Figure 2b. Residuals from Scrappage Model with VIO-Weighted Observations: SUVs and Vans. 
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Figure 3a. Residuals from the Full Logistic Scrappage Model for Pickup Trucks 

 

 

Figure 3b. Residuals from Scrappage Model with VIO-Weighted Observations: Pickups. 

 

The conditional survival probability functions for passenger cars, SUVs and vans and pickups 
for calendar years 2003, 2011 and 2019 (8-year intervals) are shown in Figures 4-6.8 In the 
legend, “W” indicates that the estimates are based on observations weighted by vehicles in 
operation. The weighted estimates are represented by open squares while the unweighted 
estimates are represented by filled circles. Graphs showing all years can be found in Appendix 
C.  The functions are strikingly different across the vehicle types. The passenger car functions 
are narrower, and peak at conditional scrappage probabilities of 0.16 to 0.21. The ages at which 
scrappage probability peaks have shifted over time towards longer lifetimes. For passenger 

 
8 The years were chosen to be at equal time intervals, but also because the 2020 scrappage and survival 
functions deviate from the general trend, as can be seen in Appendix C. The reason for the change in 
2020 is not obvious and suggests the importance of further analysis to explore the impacts of economic 
factors. 
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cars, the age of maximum scrappage shifts from μ = 19.4 years in 2003 to μ = 22.4 in 2020, 
based on the calendar year logistic scrappage model coefficients fitted to weighted data. For 
SUVs and vans, the increase is from 19.5 years in 2003 to 22.1 years, while pickups show the 
largest shift, from 24.4 years in 2003 to 28.2 years in 2020. Weighting the data by the numbers 
of vehicles in operation by model year and calendar year increased conditional scrappage rates 
for newer vehicles in 2019 and decreased scrappage rates for older vehicles in 2003. 

 

Figure 4. Conditional Scrappage Probability Functions: 2003, 2012, 2020: Passenger Cars. 

The SUV and van functions are also broader and peak at lower scrappage rates between 0.13 
and 0.17. Unlike passenger cars, the newer SUV and van curves indicate that the peak 
scrappage rate has increased over the 2003 rate. 

 

 

 

 

 

 



 

Figure 5. Conditional Scrappage Probability Functions: 2003, 2011, 2019: SUVs and Vans. 

The conditional scrappage functions for pickups are broader still, with even lower peak 
scrappage rates of approximately 0.07 to 0.12. Weighting the data caused only minor changes 
in scrappage probabilities. 

 

Figure 6. Conditional Scrappage Probability Functions: 2003, 2011, 2019: Pickup Trucks. 

The trend toward increasing vehicle lifetimes is also evident in the cumulative survival 
probability functions (Figures 7-9). Over the 17-year period from 2003 to 2020, the median 



expected lifetimes of all vehicle types increased by several years. For all three vehicle types, 
functions based on weighted and unweighted data are very similar, but the 2019 functions for 
cars and SUVs indicate lower survival rates. 

 

Figure 7. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: Passenger Cars. 

 

Figure 8. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: SUVs and Vans. 



 

Figure 9. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: Pickup Trucks. 

The graphs in Figures 4-9 suggest that there has been a steady increase in longevity, year after 
year. However, the individual calendar year functions tell a more nuanced story. Changes in the 
calendar year fixed effects cause ups and downs in maximum scrappage rates and some 
deviations from the trend of increasing longevity, indicating that temporal factors shift the 
scrappage schedules from one year to the next (Figure 10). The year-by-year estimates show 
relatively little change in median expected lifetimes from 2003-2012, with greater increases from 
2013-2020. The full set of cspf curves are shown in Appendix C. 

The cumulative survival probability curves for each vehicle type were used to calculate median 
expected survival ages by calendar year (Figure 10). The results indicate a period of constant or 
slowly increasing median expected lifetimes through about 2010, followed by a more rapid 
increase through 2020. The data again indicate that pickup trucks have experienced the 
greatest increase in life expectancy. However, the data also reflect notable variation by calendar 
year, suggesting an important influence of economic factors.  



 

Figure 9. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: Pickup Trucks. 
 
 

VI. HISTORICAL TRENDS IN VEHICLE LONGEVITY 
Increasing longevity of U.S. passenger cars and light trucks has been observed in studies 
dating back to 1996, using data sets spanning the years from 1958 to 2020. In Table 1, 
longevity is measured by expected median lifetime, the age at which half of a given vintage of 
vehicles are expected to be still on the road and half to have been scrapped. Estimates from 
seven published studies are shown in Table 1, ordered by the starting year of the data used. For 
each estimate, the table shows the starting and ending years of the data series used in the 
estimation. For studies that reported estimates based on comparing a series of years rather 
than year by year, (e.g., Bento et al., 2018 provide expected lifetime estimates for vehicles in 
use during the years 1969-79 versus 1980-87) the midpoints of the series of years are reported 
as the starting and ending years. The annual rate of change assumes a constant rate between 
the starting and ending years, although we observe variations from year-to-year in our analysis 
of data spanning 2002-2020. Some studies estimate scrappage and survival rates for model 
years, others for all model years in operation during a calendar year. The two approaches imply 
similar trends in longevity over time. 

All seven studies cited in Table 1 found increasing longevity for U.S. passenger cars at rates 
close to 1%/year. Estimates for light trucks are mixed, with three of seven estimates indicating 
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decreased longevity for the time period in question. Bento et al. (2018) attributed decreased 
longevity to changes in the nature and use of light trucks over their study period, during which 
the introduction and popularity of minivans and passenger sport utility vehicles (SUV) 
overwhelmed sales of the pickup trucks and cargo vans that made up the great majority of light 
truck sales prior to 1975. Our and other analyses (Lu, 2006; NHTSA 20229) indicate that the 
scrappage and survival rates of minivans and SUVs are more like those of shorter-lived 
passenger cars. As a result, their increasing share of the light truck stock would tend to reduce 
the expected lifetime of light trucks in comparison to longer-lived pickups and cargo vans. This 
explanation of the negative changes in light truck longevity seems reasonable because in 1975, 
light trucks comprised 19.3% of combined car and light truck sales, and two thirds of light trucks 
sold were pickups (EPA, 2021). By 1995, light trucks accounted for 36.5% of car and light trucks 
sales, but 60% of light trucks were SUVs, minivans and vans. Separate estimates for the three 
vehicle types from 2003-2020, show increasing longevity for all three with shorter lifetimes for 
cars, minivans and SUVs compared to pickups (Greene and Leard, 2022). 

The estimated changes in longevity shown in Table 1 indicate that, whether increasing or 
decreasing, longevity changes slowly, at rates on the order of +/-1% per year. Taken as a 
whole, the studies indicate generally increasing longevity of U.S. light-duty vehicles over a 
period of more than half a century. The mean of all estimates is 0.52%/year. Excluding the 
estimates labeled “Light Trucks” which are likely affected by changing nature of the class since 
1975, the mean rate of increase is 0.96%/year, excluding all trucks it is 0.97%, and weighting 
the light truck and passenger car estimates at 1/3 and 2/3, respectively, the mean annual rate is 
0.67% per year. Assuming that longevity will continue to increase at a rate of two-thirds of a 
percent per year seems reasonable, given the similarity of the magnitude of the various 
estimates and the consistency of the trend over a very long time period.  

 

Table 1. Estimates of Trends in Light-duty Vehicle Longevity from Seven Studies. 

 
9 Expected median lifetimes calculated from NHTSA (2022) survival probability tables are 13.85 years for 
passenger cars, 14.94 for SUVs and vans and 17.61 for pickups. 



 

Source Vehicle Type Data Type Start Year End Year Start Year End Year
Hamilton & McCauley, 1999 Passenger Cars Model Year 1958 1977 9.0 11.0 1.06%
Greenspan & Cohen, 1999 Cars and Trucks Model Year 1960 1980 9.8 12.5 1.22%
Davis & McFarlin, 1996 Passenger Cars Model Year 1970 1985 10.7 12.1 0.83%
Davis & McFarlin, 1996 Trucks Calendar Year 1969.5 1975.5 14.0 14.6 0.77%
Davis & McFarlin, 1996 Trucks Calendar Year 1975.5 1983.5 14.6 15.8 0.98%
Davis & Diegel, 2013 Passenger Cars Model Year 1970 1980 11.6 12.5 0.81%
Davis & Diegel, 2013 Light Trucks Model Year 1970 1980 16.2 15.2 -0.58%
Bento et al., 2013 Passenger Cars Calendar Year 1974 1983.5 12.5 14.1 1.29%
Bento et al., 2013 Light Trucks Calendar Year 1974 1983.5 16.3 15.1 -0.80%
NHTSA, 2006. Passenger Cars Calendar Year 1984 1989.5 12.4 13.2 1.10%
NHTSA, 2006. Light Trucks Calendar Year 1984 1989.5 15.6 14.1 -1.89%
Greene & Leard, 2022 Passenger Cars Calendar Year 2003 2020 14.9 16.1 0.46%
Greene & Leard, 2022 SUV & Van Calendar Year 2003 2020 16.6 18.2 0.54%
Greene & Leard, 2022 Pickup Calendar Year 2003 2020 18.7 24.0 1.48%

Mean including light trucks 0.52%
Mean excluding light trucks 0.96%
Mean trucks weighted 1/3 0.67%

Expected Lifetime

Note: Davis and McFarlin, 1996 is based on Miaou (1995). Trucks includes light and heavy trucks. However, light trucks 
predominate by numbers. The survival rate for light trucks was estimated for the 1978-1989 period only but is almost 
identical to the all trucks numbers. For 1978-89 the expected median lifetime for light trucks was 16, and for all trucks 

Annual % 
Change



VII. PROJECTING FUTURE SURVIVAL FUNCTIONS  
In this section, we present a methodology for projecting future survival rates. We first estimate 
calendar year specific scrappage functions to confirm that the trends observed in the Trend 
Models presented above are also present when separate models are estimated for each 
calendar year. Survival rates are then calculated for each scrappage function, and the 
parameters of logistic survival functions are estimated for each vehicle type and calendar year. 
Future survival functions are projected assuming an annual rate of increasing expected median 
vehicle lifetime consistent with our models and the historical literature. 

Estimating linear trends in scrappage curve parameters even including calendar-year fixed 
effects may obscure some changes in scrappage rates due to business cycles and other 
factors. To investigate this possibility, we estimated individual logistic scrappage curves for each 
year from 2003 to 2020, for each of the three vehicle types. Calendar year scrappage functions 
require estimating four parameters for each calendar year: µ, σ, K and a, in equation 17. We 
again weighted the observations by vehicles in operation by age. All the calendar year nonlinear 
regressions produced coefficient estimates such that the model fit the data well with the 
exception of three cases in which the nonlinear estimation did not converge. The regressions 
estimates are provided in Appendix D and graphs of the scrappage and survival curves in 
Figures 11-16.  

Graphs of the calendar year-specific functions for each vehicle type show somewhat greater 
variability than the trend scrappage functions with calendar year fixed effects, but generally 
similar changes over time (compare Figures 11-13 to Figures C1b to C3b). In particular, the 
same trends of increasing longevity for passenger cars, SUVs and vans, and pickup trucks are 
evident. We see the same shifts in the time of maximum scrappage (µ = mode), and decreasing 
maximum scrappage rates. In general, the dispersion of scrappage values (σ = scale) increases 
from passenger cars to SUVs and vans to pickups, although the SUV and van curves show 
somewhat greater dispersion in the calendar year models than in the trend models (compare 
Figure 12 to Figure C2b).  

The increase in maximum scrappage rates in 2020 is not due to the onset of the COVID 19 
pandemic because the underlying data represent the vehicles in operation as of January 1 of 
2020 and the first case in the U.S. was recorded on the 18th of January, 2020 (CDC, 2023). In 
addition, the peak of the curve continued to shift toward increased longevity. Year-to-year 
changes appear to reflect a combination of content, quality and macroeconomic factors, 
suggesting interesting avenues for further analysis. 



 

Figure 11. Weighted Logistic Conditional Scrappage Probabilities, Calendar Year Models: 
Passenger Cars. 

 

Figure 12. Weighted Logistic Conditional Scrappage Probabilities, Calendar Year Models: SUVs 
and Vans. 



 

Figure 13. Weighted Logistic Conditional Scrappage Probabilities, Calendar Year Models: 
Pickups. 

 

Not surprisingly, the patterns and trends in the survival curves are also generally similar to those 
seen in the trend models (Figures C4b to C6b). As might be expected from the greater flexibility 
in the Calendar Year models, there is more variability from year to year, especially for the 
younger ages. 

 



 

Figure 14. Weighted Logistic Unconditional Survival Probabilities, Calendar Year Models: 
Passenger Cars. 

 

Figure 15. Weighted Logistic Unconditional Survival Probabilities, Calendar Year Models: SUVs 
and Vans. 



 

Figure 16. Weighted Logistic Unconditional Survival Probabilities, Calendar Year Models: 
Pickups. 

 

 



 

Figure 17. Trends in Median Expected Survival: Calendar Year Models. 

Trends in median survival rates based on the Calendar Year models (Figure 17) are also similar 
to those based on the Time Trends models (Figure 10) except for the greater year-to-year 
variability allowed by the Calendar Year models. Once again, while linear models fit the 
passenger car and SUV and van models well, a quadratic curve provides a much better fit to the 
pickup truck values. The predicted increases in longevity are almost identical to those estimated 
by the Trend models. 

Extrapolating Calendar Year Survival Curves to 2075 

Current trends toward increasing vehicle automation, connectivity and electrification suggest 
that the content and durability of light-duty vehicles may continue to increase for decades. 
Assuming that the half-century trend of increasing longevity continues at the same rate for 
another half century into the future, the logistic survival functions can be extrapolated by 
including trends in parameter values. Beginning with the calendar year-specific scrappage 
curve, the extrapolation process consists of three steps: 

1. Calculate unconditional survival curves for 2003-2020 using the calendar year 
conditional survival probability (scrappage) curves; 

2. Fit simplified, 3-parameter unconditional logistic survival curves to the numerically 
calculated unconditional survival curves and verify the goodness of fit; 

3. Using the 2020 simplified survival curves extrapolate future year-by-year survival curves 
by adjusting the parameters to insure that the expected median lifetime increases by 
0.67%/year. 
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The unconditional probability of a vehicle surviving to age a is calculated using equation (5), 
where the conditional probability of surviving to age a given survival to a-1 is  𝑝𝑝(𝑎𝑎|𝑎𝑎 − 1), and 
the unconditional probability of surviving to age a is 𝑃𝑃(𝑎𝑎). 

    𝑃𝑃(𝑎𝑎) = ∏ 𝑝𝑝(𝑎𝑎 − 𝑖𝑖|𝑎𝑎 − 𝑖𝑖 − 1)𝑎𝑎
𝑖𝑖=0      (18) 

The fitted unconditional survival function is a cdf and requires only three parameters: μ, σ and k, 
as shown in equation (19). In the logistic probability distribution, the mean, median and mode 
are equal to the location parameter, µ. In the modified logistic survival function the median of the 
cumulative survival function is the point, x, at which the cumulative function equals 0.5. 

     0.5 = 1
1+𝑒𝑒−(𝑥𝑥−µ)/σ+𝑘𝑘

     (19) 

Solving for the median expected lifetime, x: 

     𝑥𝑥 = µ− σ ln(1 − 𝑘𝑘)     (20) 

The historical studies cited above indicate that the median expected lifetime has increased at an 
average annual rate of approximately 0.67% per year. Because the median expected lifetime 
depends on all three parameters (µ, σ, k), there are many combinations of the three that could 
produce the desired increase in median expected lifetime. Assuming that this trend is equally 
driven by the two right-hand-side terms in equation (20), μ should increase by 0.67%/year and 
σln(1-k) should also. 

  𝑥𝑥𝑡𝑡 = 1.0067𝑥𝑥𝑡𝑡−1 = 1.0067(µ− σ ln(1 − 𝑘𝑘) =  1.0067µ− 1.0067σ 𝑙𝑙𝑛𝑛(1 − 𝑘𝑘) (21) 

Since there is no obvious reason to change one parameter more than the other, it again seems 
reasonable to assign an equal rate of increase to the two components, σ and 𝑙𝑙𝑛𝑛(1 − 𝑘𝑘). This 
requires multiplying σ by sqrt(1.0067) and solving for a value for kt that makes: 

     𝑙𝑙𝑛𝑛(1−𝑘𝑘𝑡𝑡)
𝑙𝑙𝑛𝑛(1−𝑘𝑘𝑡𝑡−1) = (1.0067)0.5    (22) 

No unique ratio of kt to kt-1 solves equation (22) for all time period. Instead, because the values 
of k in the fitted survival curves range only from 0.02 to 0.06, we set the ratio kt/kt-1 = kt-

1(1.0067)0.5 as an approximation. Although solving for a constant ratio of kt/kt-1 does not give an 
exact solution for all forecast years, it changes the ratio of logarithms by only 0.001% for cars up 
to 0.005% for pickups over the period from 2020 to 2075. In terms of the percent change of the 
annual rate of change (approximately 0.33%/year) the error ranges from about 0.5% to 1.5% of 
0.33%. Thus, kt = kt-1(1.0067)0.5 for all t, is used to approximate equation 22. 

Because vehicles are sold incrementally in the initial model year, and because a significant 
number of vehicles of any given model year are sold in the year following their model year, the 
first two years of data were not used in the statistical estimation of scrappage functions. In 
calculating scrappage and survival rates using the estimated scrappage functions, we assumed 
no vehicles were scrapped during the transition from age 0 to age 1. In fact, a small number of 
vehicles are scrapped in their initial year due to severe crashes and other causes. To reflect 
this, we adjusted the survival curves to include a 0.5% scrappage rate in their first year. The 
resulting projected unadjusted and adjusted survival curves are shown in Figures 18-20.

 



 

Figure 18. Adjusted, Projected Survival Rates, Calendar Year Models: Passenger Cars. 

 

 

Figure 19. Adjusted, Projected Survival Rates, Calendar Year Models: SUVs and Vans. 



 

Figure 20. Adjusted, Projected Survival Rates, Calendar Year Models: Pickups.

VIII. DISCUSSION 
The enhanced logistic function with calendar year fixed effects, linear trends in k, μ, σ and the 
asymptote, and exponential trends by model year describes the data well, despite some 
patterns that appear in the residuals. However, these patterns are far less pronounced than 
those in the residuals from the Weibull function. Weighting observations by the numbers of 
vehicles in operation by vehicle type, age and calendar year yields small improvements in mean 
square errors of the logistic models, with the noticeable improvements in fits for younger 
vehicles at a cost of somewhat poorer fits to vehicles more than 25 years old.  

The results strongly support the following descriptive findings: 

1. Conditional scrappage rates are different for passenger cars, SUVs and vans, and 
pickup trucks, with pickups having the lowest scrappage rates and longest survival 
times. 

2. Over the 2003-2020 period, expected lifetimes increased by several years for all three 
vehicle types, although the increase is not constant and uniform from one year to the 
next. 

3. Light duty vehicles now have expected lifetimes of 18-27 years, with potentially 
important implications for public policies that regulate new vehicles and rely on stock 
turnover to achieve their full effect. The effect of increasing vehicle age for all vehicle 
types has been amplified by the increased market share of light trucks. 

4. In addition to the trends towards increasing life expectancies, scrappage and survival 
rates vary from year to year, indicating that factors such as new vehicle prices, 
macroeconomic variables and other secular shocks have important effects on vehicle 
scrappage. 

It is tempting to assume that the calendar year effects and trends incorporated in the statistical 
scrappage models represent secular changes in prices and economic factors, while the model 



year variables reflect technological changes in vehicle durability embodied in the vehicles 
manufactured in a given year. However, vehicle prices may also vary by model year for various 
reasons, including content such as luxury accessories that would not affect technical durability. 
Likewise, technological change over time might also affect the maintenance and repair of 
vehicles across model years. This study has not attempted to identify the causes of changes in 
vehicle scrappage and survival over time but only to describe them. 

Increased vehicle survival rates imply that it will take more time to turn over the stock of light 
duty vehicles. From a public policy perspective, it will take longer for the benefits of increased 
fuel economy, reduced pollutant emissions and improved safety features to achieve their full 
impact. The changes in scrappage rates over the past two decades suggest that nearly 
complete replacement of the existing light-duty vehicle stock may take 10% to 20% longer today 
than it would have twenty years ago. The persistence and relatively consistent rates of 
increasing vehicle longevity over the past 70 years suggest that vehicles may continue to have 
longer lifetimes well into the future. Further increases in vehicle content through automation, 
improved crash avoidance, and the transition to electric drive could be driving forces for greater 
life expectancy in the future. Whether past trends will continue is not known, and whether policy 
intervention to accelerate stock turnover would be beneficial is an open question. Answering 
such questions will require a better understanding of the causes of increased vehicle longevity. 
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APPENDIX A. RESIDUALS FROM WEIBULL MODELS  
Although the estimated Weibull conditional scrappage models produced high adjusted R2 values 
and generally, highly statistically significant coefficient estimates, examination of their residuals 
plotted against vehicle age revealed much more pronounced systematic patterns than are 
evident in the residuals from the logistic models (see Figs. 1-3, above). The patterns clearly 
indicate that the curvature of the Weibull function periodically under- and over-predicts 
scrappage rates for all three vehicle types. This effect persisted whether or not calendar year 
fixed effects and model year trends were included, and could not be corrected by weighting the 
data, for example by number of vehicles in operation. The residuals from logistic models show 
far less pronounced systematic lack of fit and have slightly higher R2 values, lower mean 
squared errors, and improved significance levels for estimated coefficients.   
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Figures A1, A2, A3. Residuals vs. Vehicle Age for Weibull Conditional Scrappage Functions 
with Fixed Calendar Year Effects and Calendar Year and Model Year Coefficient Trends. 
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APPENDIX B. RESULTS OF STATISTICAL ESTIMATION OF 
LOGISTIC MODELS WITH TIME TRENDS 
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APPENDIX C. SCRAPPAGE AND SURVIVAL CURVES OF 
TIME TREND MODLES BY CALENDAR YEAR 

 

 

Figure C1a. Passenger Car Scrappage Rates vs. Age: Unweighted Data 

 



 

Figure C1b. Passenger Car Scrappage Rates vs. Age: Data Weighted by Vehicles in Operation. 

 

 

Figure C2a. SUV and Van Scrappage Rates vs. Age: Unweighted Data 

 



 

Figure C2b. SUV and Van Scrappage Rates vs. Age: Data Weighted by Vehicles in Operation. 

 

 

Figure C3a. Pickup Truck Scrappage Rates vs. Age: Unweighted Data 



 

 

Figure C3b. Pickup Truck Scrappage Rate vs. Age: Weighted by Vehicles in Operation. 

 

 



 

Figure C4a. Passenger Car Survival Probability Function: Unweighted Data. 

 

Figure C4b. Passenger Car Survival Probability Function: Data Weighted by Vehicles in 
Operation. 



 

Figure C5a. SUV and Van Survival Probability Function: Unweighted Data. 

 

 

Figure C5b. SUV and Van Survival Probability Function: Data Weighted by Vehicles in 
Operation. 



 

Figure C6a. Pickup Truck Survival Probability Function: Unweighted Data. 

 

Figure C6b. Pickup Truck Survival Probability Function: Data Weighted by Vehicles in 
Operation. 

 



APPENDIX D. CALENDAR YEAR SCRAPPAGE MODEL PARAMETER 
ESTIMATES 

Weighted Nonlinear Regression Results 
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