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ABSTRACT

We estimate models of scrappage rates and survival probabilities as a function of vehicle age
for U.S. light-duty vehicles. We use counts of vehicles in operation by vehicle type and model
year for calendar years 2002-2020, which allows us to estimate scrappage functions for years
2003-2020. We estimate models for three vehicle types: passenger cars, SUVs and vans, and
pickup trucks. We found that modified logistic functions fit the data well for each vehicle type.
Results of estimation via nonlinear least squares indicate that life expectancies for all three
vehicle types increased over the study period by 2-3 years for passenger cars, 3-4 years for
SUVs and Vans, and 5-6 years for pickup trucks. By 2020, median expected lifetimes ranged
from about 17 years for passenger cars, and 20 years for SUVs and vans, to about 25 years for
pickup trucks. A review of historical trends in the life expectancies of U.S. light-duty vehicles
indicates they have been increasing by 0.5% to 1% per year for over 50 years. We develop a
method for projecting future survival functions by extrapolating from our estimated survival
functions. Our findings have significant implications for policies geared toward reducing fuel use
and greenhouse gas emissions.
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.  INTRODUCTION

Statistical modeling of survival and “time-to-event” has an extensive literature and range of
application from medicine to engineering (e.g., Hosmer et al., 2008). Economists and engineers
have been modeling scrappage rates and survival probabilities of automobiles for more than 50
years. Predicting the speed at which the stock of motor vehicles will turn over is important to
analyzing the benefits and costs of policies such as promoting deep decarbonization, energy
efficiency, reduced pollutant emissions and vehicle safety. Early studies were limited by the
relatively small number of ages tracked in available data and the lack of detailed information
about vehicle attributes. Today, fifty vehicle vintages are reported, and individual vehicles can
be identified. The remainder of this section presents a mathematical definition of survival and
scrappage rate functions.

Survival times and failure rates (scrappage) of equipment are traditionally modeled by survival
and hazard functions. Let fx(a) be the probability density function for failure at age a.® The
probability of failure by age a is the integral of fx(a) from 0 to a:

Fx(a; k) = p(X < a) = [ f(x; 4, k)dx. (1)

The survival function, the probability of surviving to at least a-years old is Sx(a) = 7-Fx(a). Note
that fx(a) is not the probability of failure (scrappage) given that the equipment has survived to
aga a-1 but rather the unconditional probability of failure at time a. The relative risk of scrappage
in an infinitesimally small time interval after a, given (conditional on) survival to a is given by the
hazard function which is the ratio of the pdf to the survival function, as shown in equation (2).

_ fx(@)
hy(a) = &5 2
In discrete time, the hazard function is the probability of scrappage during the time interval a to
a+1 divided by the probability of survival to age a. The hazard or conditional scrappage function
is not a probability density function because, in general, it does not integrate to 1 over the range
of age, a.

Vehicle survival functions are cumulative probability density functions that represent the
probability of surviving to a given age, x, for a new vehicle sold in year t:

pe(x) (3)

The conditional survival probability function (cspf) represents the probability of a new vehicle
surviving to age x+1, given that a vehicle has survived to age x. The scrappage rate function is
1 minus the cspf.

px+1]x) (4)

3 The functions assume age is a continuous variable. In practice, data on vehicles in operation are
assigned integer age values and models typically predict at discrete intervals. In such cases, the
probability mass function can be substituted for the probability density function.



The cumulative survival function is therefore the cumulative product of the conditional survival
probabilities.

p(x) =p(xlx — Dp(x — 1{x — 2) .. p(1]0)1 (5)

Scrappage rates are estimated by 1 minus the conditional probability of survival, i.e., one minus
the ratio of the number of x-year-old vehicles in operation in year t to the number of x-1-year-old
vehicles in operation in year t-1.

1 n(xt) _ nx-1t-1)-n(x,t)
1- p(x|x N 1) =1 n(x—1,t-1) - n(x-1t-1) (6)
The unconditional survival probability function (the cumulative survival function) is calculated
from the conditional survival probabilities using equation (5).

This report presents the results of an analysis of recent trends in survival and scrappage rates
for light-duty vehicles in the U.S. Models are estimated for three vehicle categories: 1)
passenger cars, 2) SUVs and vans, and 3) pickup trucks. Functions are estimated for calendar
years 2003 to 2020, over which time the number of age groups in the available data increases
from 33 to 50 years. Section Il presents a review of the literature on vehicle scrappage and
survival, focusing on functional forms and methodology. Section Il presents the details of the
modified logistic model used in this analysis. Section IV describes the vehicle population data,
and Section V presents the results of the statistical estimation of trends in vehicle longevity.
Section VI reviews published studies that have estimated historical trends in vehicle longevity
using data going back to 1958. Section VII presents a method for extrapolating survival models
to predict future survival rates. Section VIl discusses the potential implications of the statistical
analysis for public policy and possible directions for future research.

IIl. REVIEW OF VEHICLE SCRAPPAGE LITERATURE

Previous analyses of automobile scrappage have used several different functions to model
scrappage as a function of vehicle age or cumulative mileage with a tendency to prefer Weibull
or logistic functional forms (Engers et al, 2009). Zachariadis et al. (2001) proposed using the
two parameter Weibull distribution as a function of vehicle age to model the effect of
technological changes in vehicle emissions over time. Xu and Gao (2019) used three types of
survival models (Kaplan-Meier, exponential and Weibull) to analyze the relationship between
engine and transmission faults and vehicle survival. They concluded that vehicle lifetimes had
been increasing due to improved reliability of engines and transmissions. Kolli et al. (2010)
tested Beta, Gamma, Lognormal and Weibull distributions and concluded that the Beta and
Weibull fit their data best. In a study of vehicle lifetimes in Japan, Kagawa et al. (2011) found
that likelihood ratio tests supported use of the generalized gamma distribution of which the
Weibull function is a special case. A study of vehicle lifetimes in 17 countries did not reject the
hypothesis that lifetimes followed the Weibull distribution (Oguchi and Fuse, 2015).

“Mechanistic” scrappage models estimate scrappage solely as a function of age or cumulative
miles while “economic” models add equations to estimate the effects of economic and other
factors that vary over time and space. Mechanistic conditional scrappage rate (r') models were
estimated by Walker (1968), Parks (1977) and Greene and Chen (1981). Walker (1968) was the



first to specify a scrappage model comprised of separate mechanistic and economic equations.
Mechanistic scrappage was estimated as a logistic function of vehicle age.

1

r*(a) = m (7)

Year-to-year changes in the total number of vehicles scrapped, q;, were estimated by a
separate log-linear function of the price of used vehicles, P;, the ratio of new vehicle sales to
total stock (the turnover rate, R;), and the aggregated mechanistic scrappage rate predicted
using equation 7, r;, multiplied by the total stock of vehicles, n;:

qc = AREPrin, (8)

Parks (1977) imbedded economic factors (x;) in a logistic scrappage equation, and estimated
the logit of the scrappage rate as a linear function of the ratio of the price of an a-year-old used
car, Py(a,t), to a price index of repair costs, Pn(t), and the ratio of the scrappage price of an a-
year-old vehicle, Ps(a,t), to the repair cost index.

* t . 1
ln(w) ZZjﬁjxj(a't) - r*(a,t) ZW 9)

1-r*(at)
Greene and Chen (1981) estimated mechanistic scrappage models for passenger cars and light
trucks using a modification of Walker’s (1968) logistic function that included an asymptotic
scrappage rate (A):

1
* _
r(a) = A+Be—(BotB1a)

(10)

Based on 1966-77 data with only 12 age groups, they found significant differences in expected
median lifetimes (9.9 years for cars and 16.4 for trucks) and asymptotic scrappage rates (cars,
0.29; trucks, 0.13). Using data on U.S. vehicles in operation from 1966-1992, Miaou (1995)
estimated an expanded logistic model in which the exponential function in equation 10 was a
function of socioeconomic variables, including new and used car prices, as well as age.

Manski and Golding’s (1983) analysis of vehicle scrappage in Israel appears to be the earliest
study of the combined effects of new and used vehicle prices on scrappage. Hamilton and
Macauley (1999) divided scrappage effects into an “embodied” durability effect (similar to
mechanistic scrappage) and a “dis-embodied” effect that included not only economic factors but
also the effect of such things as reduced accident rates. Beginning with the model of Greene
and Chen (1981) (equation 10), they added a linear equation that made the coefficient of age,
B+, a function of a set of “disembodied” variables and a set of “embodied” variables. The
embodied variables consisted of model year indicator variables while the disembodied variables
were calendar year indicators. After removing the first four years of a model year’s life and any
years that implied negative scrappage rates, they were left with 11 age groups for each of 42
calendar years from 1950 to 1991. Their overall conclusion was that dis-embodied (calendar
year) factors had no effect until after 1970 but that subsequently vehicle life expectancy
increased substantially. Vintage specific factors appeared to have little effect but, if anything,
appeared to reduce life expectancy.

Greenspan and Cohen (1999) also modeled “engineering scrappage” (mechanistic) and
“cyclical scrappage” (economic) separately. Engineering scrappage was modeled as a function
of time and age. Cyclical scrappage, defined as actual total scrappage minus estimated



engineering scrappage, was modeled as a linear function of the unemployment rate and price
indexes for new vehicles, vehicle repairs and gasoline.

Citing an unpublished 2001 study by Schmoyer using Greenspan and Cohen’s methodology,
Davis et al. (2014) reported scrappage and survival rates for passenger cars and light trucks of
model years 1970, 1980 and 1990. The estimates indicate that passenger car median survival
times increased from 11.5 years for the 1970 model year to 16.9 years for 1990 model year
cars. The study found a slight decline in light truck median lifetimes, from 16.2 years in 1970 to
15.5 years in 1990. The decline is likely due to the changing nature of light trucks over that
period, as discussed further below.

In early studies, scrappage models were estimated using aggregate survival rates of large
numbers of vehicles as the dependent variable. Chen and Niemeier (2005) estimated Weibull
scrappage functions based on individual vehicles randomly sampled from California’s smog
inspection program. Their model employed a mass point method that allowed them to estimate
the effects of other variables, such as state of repair and make, on the probability of survival.

The National Highway Traffic Safety Administration (NHTSA, 2006) estimated survival functions
for passenger cars and light trucks as a function of age for use in regulatory analyses. Survival
was defined as the ratio of the number of model year y vehicles in operation in a given year,
t=y+a, where a is vehicle age, divided by the number in operation in the year in which that
cohort of vehicles was new, t=y. Thus, NHTSA'’s function is an unconditional survival function.
NHTSA (2006) estimated two-piece survival functions for passenger cars and light trucks as a
function of age. In equation 11, A and B are constants to be estimated for cars ten years old or
less (i = 1) and older than ten years (i = 2). For light trucks the breakpoint was put at 12 years.

AL-+BL-a .
)

n@=1—-e° i=1,2 (11)

Li et al. (2009) estimated a logistic scrappage model using data for 20 U.S. metropolitan areas

that is model and vintage specific for the years 1997-2000 but only market segment specific for
2001-2005. The model and model year detail permitted the inclusion of seven sets of indicator

variables in addition to gasoline price, fuel economy, median household income and household
size. The results indicated that when gasoline prices increased, scrappage rates decreased for
the most efficient 20% of vehicles and increased for the lower 80% of vehicles.

Scrappage models have been used extensively to estimate the impacts of accelerated
scrappage policies on vehicle fuel use and emissions. A review of early studies is provided by
Van Wee et al. (2011). Li and Wei (2013) used a discrete choice framework to analyze the
impacts of the U.S. Cash for Clunkers program on vehicle scrappage, new vehicle demand and
emissions. Three variables were included in the model, vehicle age, fuel consumption per mile
and vehicle type (car vs. light truck), as well as fixed effects for make of vehicle. Separate
regressions were estimated for the 5-year scrappage rate from 2001-2005 and the 3-year
scrappage rate from 2006-2008.

Jacobsen and Van Bentham (2015) analyzed scrappage rates for U.S. vehicles up to 19 years
of age over the period 1999-2009, at the make, model and trim level. They regressed the
logarithms of scrappage rates on the logarithms of used car prices and indicator variables
comprised of make-model interacted with age and calendar year interacted with age.
Recognizing the endogeneity of used car scrappage rates and used car prices, they substituted
an instrumental variables estimate of used car prices for the actual prices.



Both new and used car prices have been included among the economic factors affecting
scrappage rates. Recent studies indicate that scrappage is inelastic with respect to new and
used vehicle prices (Jacobsen et al., 2021). Elasticities of vehicle scrappage with respect to
used car values estimated by Jacobsen and van Bentham (2015) ranged from -0.36 for pickups
to -0.77 for vans. Combining all classes together produced an elasticity estimate of -0.7.
Considering only vehicles aged 10-19, the estimate for all classes combined was -0.60%, with a
range of -0.19 (pickups) to -0.92 (vans) across vehicle classes. A somewhat lower elasticity, -
0.36, was found by Bento et al. (2018) for U.S. light-duty vehicles over the period 1969-2014.

Alberini et al. (2018) used a Weibull hazard function to estimate the effects of emissions taxes
on the scrappage of used vehicles aged 4 to 14 years in Switzerland. They chose a Weibull
hazard function with A =1 and a proportional hazard model. The proportional hazard function is
convenient for introducing additional variables, Z, that can affect scrappage rates besides age
or cumulative miles because it is separable in the influencing variables.

h(x,Z) = hy(x)eZf = kxk-1eZ8 (12)

Bento et al. (2018) fitted a logistic function to U.S. vehicle conditional scrappage rates for
vehicles up to 14 years old. Unlike the Weibull hazard function, the logistic hazard function
approaches an asymptotic scrappage rate (7/L) as age, x, increases.
_ 1

FQx) = L+Be—Bx (13)
Bento et al. (2018) assumed that F(x) represented an “engineering” scrappage rate and that
“cyclical” factors such as used car prices, P, rate of turnover of vehicle ownership, r, and the
number of vehicles in operation, n, would proportionately affect scrappage rates:

he(x,Z) = agripPn,F,(x) (14)

Zheng et al. (2019) estimated the logistic scrappage model used by Greene and Chen (1981) to
quantify the effects of a change in China’s mandatory scrappage regulations on the expected
median lifetime of four types of light-duty vehicles. Lu et al. (2018) used a two-parameter logistic
function to model the survival and scrappage rates of eight types of vehicles in China. The
authors note that although vehicle scrappage and survival rates are normally affected by a
number of parameters, including vehicle age, new vehicle prices, repair costs, cumulative
distance traveled, fuel prices, emissions regulations, fuel economy and subsidies, vehicle
survival rates in China were mainly affected by China’s mandatory scrappage standards. Their
analysis is similar to the seminal work on Chinese vehicle scrappage by Hao et al. (2011) which
employed a Weibull function to model the evolution of private passenger vehicles, business
passenger vehicles and taxis in China.

Nakamoto et al. (2019) employed Weibull distributions to represent the cumulative scrappage
functions of 15 countries in an assessment of lifecycle CO, emissions. The parameters of the
Weibull functions were taken from an analysis by Oguchi and Fuse (2015) of data spanning the

4 The similarity of newer and older vehicles’ price elasticities may be due to the much lower prices of older
vehicles. The elasticities still imply that older vehicles’ scrappage rates will respond more than newer
vehicles’ scrappage rates to an equal dollar reduction in price.



years 2000-2009. Rith et al. (2020) developed a simplified method for estimating Weibull
survival functions for developing countries with limited data on vehicles in operation.

Zaman and Zacour (2020) simulated consumers’ new vehicle purchase and scrappage
decisions under varying incentives to accelerate scrappage by means of a dynamic
programming model® similar to the optimal replacement model of Baltas and Xepapadeas
(1999). Laborda and Moral (2020) used a logistic scrappage function to estimate the effects of
accelerated scrappage programs in Spain. Variables included in the scrappage function in
addition to vehicle age were gross domestic product, the volume of used sales, roadway
fatalities and injuries, and (0,1) variables representing different scrappage incentives.

Gohlke and Cribioli (2021) estimated survival probabilities for light-duty vehicles as a whole and
by powertrain, by comparing new vehicle sales data by model year to the numbers of vehicles in
operation in calendar year 2021, estimating a median survival time of 17.6 years. Looking at
individual models, they found that pickup trucks like the Ford F150 had expected survival times
substantially longer (about 22 years) than sedans like the Honda Civic (about 18 years).
Although the years of data available were more limited, they found that hybrid vehicles’
expected median survival times were comparable to those of all light-duty vehicles (18.3 vs.
17.6 years). With ten or fewer model years of data, definitive estimates of survival curves for
plug-in and full battery electric vehicles could not be estimated.

NHTSA (2022) updated a previous (NHTSA, 2008) logistic model of scrappage as a function of
vehicle age, new and used car prices, fuel prices, fuel economy, GDP, and other variables.

n (292 = 57, e (15)

1-1¢(a,x)

Using data on vehicles in operation from 1975-2017, NHTSA (2022) estimated separate
equations for passenger cars, SUVs and vans and pickup trucks. Fixed effects were included
for model years to represent trends in vehicle technology, and for calendar years 2009 and
2010 to represent the effects of the Great Recession and policies implemented during those
years to accelerate the retirement of used vehicles. The analysis detected a trend of increasing
vehicle longevity, but noted that the trend might be affected by the fact that the number of age
categories included in the data steadily increased over time. The logistic scrappage function
was used for ages up to 30 years. Beyond thirty years of age an “accelerated decay function”
was used to reduce the number of older vehicles and insure that the total vehicle counts
predicted by the model matched the historical data.

Despite intense interest in modeling the future evolution of the stocks of zero emission vehicles,
empirical research has been limited by the lack of data on modern electric vehicles of sufficient
age to experience significant scrappage. Spangher et al. (2019) used an agent-based model to
simulate the impact of electric vehicles sales on CO, emissions. Lacking data on electric
vehicles, their model used logistic scrappage probabilities as a function of age for five types of
light-duty vehicles based on conventional internal combustion engine vehicles. Nakamoto et al.
(2019) were also unable to estimate cumulative scrappage functions for different vehicle types

5 The model assumed a constant maximum vehicle lifetime and divided consumers into high and low
income groups with different propensities to purchase new and used vehicles. They calibrated the model
using plausible assumptions rather than historical data and conducted sensitivity tests on parameter
values.



and propulsion systems. They concluded that “...expanded analysis with a focus of wide variety
of vehicle models is an important and challenging future work.” (p. 1043)

lll. THE LOGISTIC SCRAPPAGE MODEL

The review of the literature reveals four general issues relevant to this analysis of trends in light-
duty vehicle scrappage and survival.

1. The conceptual distinction between mechanistic vs. economic models
2. Choice of functional form between Weibull and logistic functions

3. Changes in scrappage and survival rates over time

4. Differences in scrappage rates among vehicle types

Vehicle scrappage analyses have long recognized that although scrappage patterns are most
strongly related to vehicle age and use, economic and other factors are also important. The
concept of mechanistic scrappage includes wear and tear with cumulative use and exposure, as
well as inherent durability due to technology embodied in the vehicle (materials and the quality
of design and manufacture). Economic factors include supply, demand and prices, design and
technological obsolescence, economic determinants of vehicle use, maintenance and repair,
and public policies. Because our primary interest is in trends in vehicle longevity regardless of
cause, and trends toward increased longevity that may continue in the future, we represent the
combined mechanistic and economic effects with time trend variables and calendar year and
vintage fixed effects. We also estimate separate functions for three vehicle types: 1) passenger
cars, 2) SUVs and vans, and 3) pickup trucks. Differences among the three vehicle types found
by NHTSA (2022) are clearly evident in the graphs shown below.

Both Weibull and logistic functional forms have been widely used in the literature to model
conditional scrappage rates. We estimate both forms, and both produce statistically highly
significant coefficient estimates and R? values of 0.98 or better. However, we decided in favor of
the logistic function based on analysis of residuals from the fitted models, as explained in
appendix A.

The logistic probability density function (pdf) provides a flexible basis for constructing a
conditional survival probability function. As noted above, the conditional survival probability
function (cspf) is not a probability density function and does not integrate to 1 over the range of
ages. Instead, it describes the probability that a vehicle that has survived to age x, will also
survive to age x+1. The logistic pdf is shown in equation 1, in which p is the mean, median and
mode of the pdf and ¢ scales the effect of increasing age on the probability of survival.

e~(-w/o

fewo) = amey (16)

The pdf can be readily modified to become a cspf by including a scaling factor, K, (since the
cspf does not integrate to 1) and an asymptotic scrappage rate, A, to allow the cspf to be
asymmetric, and to allow the possibility that the probability of survival may not converge toward
0 within the range of ages in the data. The modified cspf is shown in equation 17, which has
been rearranged by multiplying numerator and denominator by e =#)/7.
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Equation 17 is static and does not include the fact that technological advances and economic
factors may change the coefficients of the cspf over time. To include the effects of changes in
economic factors over time, K is replaced by calendar year fixed effects, K: = exp(aid:), where a;
is a year-specific constant to be estimated and d: is a year-specific indicator variable, for t =
2003 to 2020. The possibility of a linear trend in average age is included by replacing u by po +
M41t, and o is replaced by oo + 01t to allow the dispersion of the scrappage functions to change
over time. Technological change, on the other hand, is expected to be incorporated in vehicles
predominantly by model year rather than affecting all ages of vehicles in a calendar year. This
possibility is included by multiplying centered age, x-u, by exp(By), where y increases from 0 to
70 as model year increases from 1950 to 2020.

IV. DATA

The data used in this analysis are proprietary counts of light-duty vehicles in operation on
January 1 of each year, in the United States. Use of the data was purchased from IHS Markit
Insight™ which requires nondisclosure of the data but permits publication of statistical
inferences derived from it that do not disclose the original counts. The data were aggregated to
make, model, body style and trim levels by calendar year and model year. These data were
further aggregated into three vehicle types within each age group, 1) passenger cars, 2) SUVs,
minivans and passenger vans, 3) pickup trucks. Vehicle age is calculated by subtracting a
vehicle’s model year from the current calendar year.® For calendar year 2003, there are 33 age
groups, and the number of age groups increases by one each year to 50 age groups in 2020.

When vehicles are new or 1 to 2 years old, it is common for vehicles in operation data to show
negative scrappage, i.e., an increase in vehicles in operation. Frequently, the entire production
of a model year is not sold within the first or even second calendar year. In addition, a new
model year is typically introduced before its corresponding calendar year. For this reason, the
scrappage functions are estimated using ages 3 and older.

V. ESTIMATION OF MODELS WITH TIME TRENDS

The full time-trend cspf model was estimated using the Stata™ statistical software’s nonlinear
least square routine with the robust standard errors option to correct for heteroscedasticity and
certain types of mis-specification. Models were estimated for three vehicle types: passenger
cars, SUVs and vans, and pickup trucks, without weighted observations and with weighting of
scrappage rates by the number of vehicles in operation for the respective vehicle type, age and
calendar year. All models achieved adjusted R? values of 0.99 and all coefficient estimates of all
models were statistically significant at the 0.0001 level, using the robust standard error

6 In a few cases of new vehicle registrations, a vehicle’s model year exceeds the calendar year. We code
these observations as having an age of 0, representing a new vehicle.



estimates.” The detailed results for models including time trended parameters and calendar
year fixed effects are shown in Appendix B. Despite the high R? values, patterns in the residual
plots indicate a small remaining lack of fit for the logistic functional form or possible
misspecification due to omission of explanatory variables other than age and vintage. There is
also clear evidence of heteroscedasticity, confirming the appropriateness of using the robust
estimation method (Figures 1-3). As expected, residuals from the regressions weighted by
vehicles in operation show smaller variance for vehicles up to about 20 years of age, but
increased variance for older vehicles. The residual plots also suggest there may be a few
outliers in the data. Unweighted scrappage models for passenger cars and pickups were re-
estimated, respectively deleting 2 and 4 seeming outliers. There were small differences in some
estimated coefficients. The results shown in graphs below and the regression results reported in
Appendix B do not exclude potential outliers, but include all data points.

Logistic, Multiplicative Fixed Year Effects: PASSCAR
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Figure 1a. Residuals from the Full Logistic Scrappage Model for Passenger Cars
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7 R-squared values in nonlinear models can be misleading. Mean squared error (MSE) is an alternative
measure of model fit that can be more meaningful. Similarly parameterized Weibull models had MSE
values that were 7% larger than the logistic model MSEs for pickups, 46% larger for SUVs and vans, and
51% larger for passenger cars.



Figure 1b. Residuals from Scrappage Model with VIO-Weighted Observations: Passenger Cars.

Logistic, Multiplicative Fixed Year Effects, SUVVAN
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Figure 2a. Residuals from the Full Logistic Scrappage Model for SUVs and Vans
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Figure 2b. Residuals from Scrappage Model with VIO-Weighted Observations: SUVs and Vans.



Logistic, Multiplicative Fixed Year Effects, PICKUP
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Figure 3a. Residuals from the Full Logistic Scrappage Model for Pickup Trucks

Residuals from VIO-weighted Regression: Pickups
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Figure 3b. Residuals from Scrappage Model with VIO-Weighted Observations: Pickups.

The conditional survival probability functions for passenger cars, SUVs and vans and pickups
for calendar years 2003, 2011 and 2019 (8-year intervals) are shown in Figures 4-6.8 In the
legend, “W” indicates that the estimates are based on observations weighted by vehicles in
operation. The weighted estimates are represented by open squares while the unweighted
estimates are represented by filled circles. Graphs showing all years can be found in Appendix
C. The functions are strikingly different across the vehicle types. The passenger car functions
are narrower, and peak at conditional scrappage probabilities of 0.16 to 0.21. The ages at which
scrappage probability peaks have shifted over time towards longer lifetimes. For passenger

8 The years were chosen to be at equal time intervals, but also because the 2020 scrappage and survival
functions deviate from the general trend, as can be seen in Appendix C. The reason for the change in
2020 is not obvious and suggests the importance of further analysis to explore the impacts of economic
factors.



cars, the age of maximum scrappage shifts from p = 19.4 years in 2003 to p = 22.4 in 2020,
based on the calendar year logistic scrappage model coefficients fitted to weighted data. For
SUVs and vans, the increase is from 19.5 years in 2003 to 22.1 years, while pickups show the
largest shift, from 24.4 years in 2003 to 28.2 years in 2020. Weighting the data by the numbers
of vehicles in operation by model year and calendar year increased conditional scrappage rates
for newer vehicles in 2019 and decreased scrappage rates for older vehicles in 2003.

Logistic Conditional Scrappage Probabiities: Passenger Cars
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Figure 4. Conditional Scrappage Probability Functions: 2003, 2012, 2020: Passenger Cars.

The SUV and van functions are also broader and peak at lower scrappage rates between 0.13
and 0.17. Unlike passenger cars, the newer SUV and van curves indicate that the peak
scrappage rate has increased over the 2003 rate.



Logistic Conditional Scrappage Probabiities: SUVs and Vans
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Figure 5. Conditional Scrappage Probability Functions: 2003, 2011, 2019: SUVs and Vans.

The conditional scrappage functions for pickups are broader still, with even lower peak
scrappage rates of approximately 0.07 to 0.12. Weighting the data caused only minor changes
in scrappage probabilities.

Logistic Conditional Scrappage Probabiities: Pickup Trucks
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Figure 6. Conditional Scrappage Probability Functions: 2003, 2011, 2019: Pickup Trucks.

The trend toward increasing vehicle lifetimes is also evident in the cumulative survival
probability functions (Figures 7-9). Over the 17-year period from 2003 to 2020, the median



expected lifetimes of all vehicle types increased by several years. For all three vehicle types,
functions based on weighted and unweighted data are very similar, but the 2019 functions for
cars and SUVs indicate lower survival rates.

Logistic Cumulative Survival Probabiities: Passenger Cars
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Figure 7. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: Passenger Cars.

Logistic Cumulative Survival Probabiities: SUVs and Vans
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Figure 8. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: SUVs and Vans.



Logistic Cumulative Survival Probabiities: Pickup Trucks
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Figure 9. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: Pickup Trucks.

The graphs in Figures 4-9 suggest that there has been a steady increase in longevity, year after
year. However, the individual calendar year functions tell a more nuanced story. Changes in the
calendar year fixed effects cause ups and downs in maximum scrappage rates and some
deviations from the trend of increasing longevity, indicating that temporal factors shift the
scrappage schedules from one year to the next (Figure 10). The year-by-year estimates show
relatively little change in median expected lifetimes from 2003-2012, with greater increases from
2013-2020. The full set of cspf curves are shown in Appendix C.

The cumulative survival probability curves for each vehicle type were used to calculate median
expected survival ages by calendar year (Figure 10). The results indicate a period of constant or
slowly increasing median expected lifetimes through about 2010, followed by a more rapid
increase through 2020. The data again indicate that pickup trucks have experienced the
greatest increase in life expectancy. However, the data also reflect notable variation by calendar
year, suggesting an important influence of economic factors.
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Figure 9. Cumulative Survival Probability Distributions, 2003, 2011 and 2019: Pickup Trucks.

VI. HISTORICAL TRENDS IN VEHICLE LONGEVITY

Increasing longevity of U.S. passenger cars and light trucks has been observed in studies
dating back to 1996, using data sets spanning the years from 1958 to 2020. In Table 1,
longevity is measured by expected median lifetime, the age at which half of a given vintage of
vehicles are expected to be still on the road and half to have been scrapped. Estimates from
seven published studies are shown in Table 1, ordered by the starting year of the data used. For
each estimate, the table shows the starting and ending years of the data series used in the
estimation. For studies that reported estimates based on comparing a series of years rather
than year by year, (e.g., Bento et al., 2018 provide expected lifetime estimates for vehicles in
use during the years 1969-79 versus 1980-87) the midpoints of the series of years are reported
as the starting and ending years. The annual rate of change assumes a constant rate between
the starting and ending years, although we observe variations from year-to-year in our analysis
of data spanning 2002-2020. Some studies estimate scrappage and survival rates for model
years, others for all model years in operation during a calendar year. The two approaches imply
similar trends in longevity over time.

All seven studies cited in Table 1 found increasing longevity for U.S. passenger cars at rates
close to 1%l/year. Estimates for light trucks are mixed, with three of seven estimates indicating



decreased longevity for the time period in question. Bento et al. (2018) attributed decreased
longevity to changes in the nature and use of light trucks over their study period, during which
the introduction and popularity of minivans and passenger sport utility vehicles (SUV)
overwhelmed sales of the pickup trucks and cargo vans that made up the great majority of light
truck sales prior to 1975. Our and other analyses (Lu, 2006; NHTSA 2022°) indicate that the
scrappage and survival rates of minivans and SUVs are more like those of shorter-lived
passenger cars. As a result, their increasing share of the light truck stock would tend to reduce
the expected lifetime of light trucks in comparison to longer-lived pickups and cargo vans. This
explanation of the negative changes in light truck longevity seems reasonable because in 1975,
light trucks comprised 19.3% of combined car and light truck sales, and two thirds of light trucks
sold were pickups (EPA, 2021). By 1995, light trucks accounted for 36.5% of car and light trucks
sales, but 60% of light trucks were SUVs, minivans and vans. Separate estimates for the three
vehicle types from 2003-2020, show increasing longevity for all three with shorter lifetimes for
cars, minivans and SUVs compared to pickups (Greene and Leard, 2022).

The estimated changes in longevity shown in Table 1 indicate that, whether increasing or
decreasing, longevity changes slowly, at rates on the order of +/-1% per year. Taken as a
whole, the studies indicate generally increasing longevity of U.S. light-duty vehicles over a
period of more than half a century. The mean of all estimates is 0.52%/year. Excluding the
estimates labeled “Light Trucks” which are likely affected by changing nature of the class since
1975, the mean rate of increase is 0.96%/year, excluding all trucks it is 0.97%, and weighting
the light truck and passenger car estimates at 1/3 and 2/3, respectively, the mean annual rate is
0.67% per year. Assuming that longevity will continue to increase at a rate of two-thirds of a
percent per year seems reasonable, given the similarity of the magnitude of the various
estimates and the consistency of the trend over a very long time period.

Table 1. Estimates of Trends in Light-duty Vehicle Longevity from Seven Studies.

9 Expected median lifetimes calculated from NHTSA (2022) survival probability tables are 13.85 years for
passenger cars, 14.94 for SUVs and vans and 17.61 for pickups.



Expected Lifetime = Annual %
Source Vehicle Type Data Type StartYear EndYear StartYear EndYear Change

Hamilton & McCauley, 1999 Passenger Cars  Model Year 1958 1977 9.0 11.0 1.06%
Greenspan & Cohen, 1999  Carsand Trucks  Model Year 1960 1980 9.8 12.5 1.22%
Davis & McFarlin, 1996 Passenger Cars  Model Year 1970 1985 10.7 12.1 0.83%
Davis & McFarlin, 1996 Trucks Calendar Year 1969.5 1975.5 14.0 14.6 0.77%
Davis & McFarlin, 1996 Trucks Calendar Year 1975.5 1983.5 14.6 15.8 0.98%
Davis & Diegel, 2013 Passenger Cars  Model Year 1970 1980 11.6 12.5 0.81%
Davis & Diegel, 2013 Light Trucks Model Year 1970 1980 16.2 15.2 -0.58%
Bento et al., 2013 Passenger Cars Calendar Year 1974 1983.5 12.5 14.1 1.29%
Bento et al., 2013 Light Trucks = Calendar Year 1974 1983.5 16.3 15.1 -0.80%
NHTSA, 2006. Passenger Cars Calendar Year 1984 1989.5 12.4 13.2 1.10%
NHTSA, 2006. Light Trucks  Calendar Year 1984 1989.5 15.6 14.1 -1.89%
Greene & Leard, 2022 Passenger Cars Calendar Year 2003 2020 14.9 16.1 0.46%
Greene & Leard, 2022 SUV & Van Calendar Year 2003 2020 16.6 18.2 0.54%
Greene & Leard, 2022 Pickup Calendar Year 2003 2020 18.7 24.0 1.48%

Mean including light trucks 0.52%

Mean excluding light trucks 0.96%

Mean trucks weighted 1/3 0.67%

Note: Davis and McFarlin, 1996 is based on Miaou (1995). Trucks includes light and heavy trucks. However, light trucks
predominate by numbers. The survival rate for light trucks was estimated for the 1978-1989 period only but is almost
identical to the all trucks numbers. For 1978-89 the expected median lifetime for light trucks was 16, and for all trucks



VIl. PROJECTING FUTURE SURVIVAL FUNCTIONS

In this section, we present a methodology for projecting future survival rates. We first estimate
calendar year specific scrappage functions to confirm that the trends observed in the Trend
Models presented above are also present when separate models are estimated for each
calendar year. Survival rates are then calculated for each scrappage function, and the
parameters of logistic survival functions are estimated for each vehicle type and calendar year.
Future survival functions are projected assuming an annual rate of increasing expected median
vehicle lifetime consistent with our models and the historical literature.

Estimating linear trends in scrappage curve parameters even including calendar-year fixed
effects may obscure some changes in scrappage rates due to business cycles and other
factors. To investigate this possibility, we estimated individual logistic scrappage curves for each
year from 2003 to 2020, for each of the three vehicle types. Calendar year scrappage functions
require estimating four parameters for each calendar year: p, o, K and a, in equation 17. We
again weighted the observations by vehicles in operation by age. All the calendar year nonlinear
regressions produced coefficient estimates such that the model fit the data well with the
exception of three cases in which the nonlinear estimation did not converge. The regressions
estimates are provided in Appendix D and graphs of the scrappage and survival curves in
Figures 11-16.

Graphs of the calendar year-specific functions for each vehicle type show somewhat greater
variability than the trend scrappage functions with calendar year fixed effects, but generally
similar changes over time (compare Figures 11-13 to Figures C1b to C3b). In particular, the
same trends of increasing longevity for passenger cars, SUVs and vans, and pickup trucks are
evident. We see the same shifts in the time of maximum scrappage (u = mode), and decreasing
maximum scrappage rates. In general, the dispersion of scrappage values (o = scale) increases
from passenger cars to SUVs and vans to pickups, although the SUV and van curves show
somewhat greater dispersion in the calendar year models than in the trend models (compare
Figure 12 to Figure C2b).

The increase in maximum scrappage rates in 2020 is not due to the onset of the COVID 19
pandemic because the underlying data represent the vehicles in operation as of January 1 of
2020 and the first case in the U.S. was recorded on the 18™ of January, 2020 (CDC, 2023). In
addition, the peak of the curve continued to shift toward increased longevity. Year-to-year
changes appear to reflect a combination of content, quality and macroeconomic factors,
suggesting interesting avenues for further analysis.
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Figure 11. Weighted Logistic Conditional Scrappage Probabilities, Calendar Year Models:
Passenger Cars.

Weighted Logistic Conditional Scrappage Probabilites, Calendar Year Models: SUV & Vans
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Figure 12. Weighted Logistic Conditional Scrappage Probabilities, Calendar Year Models: SUVs
and Vans.
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Figure 13. Weighted Logistic Conditional Scrappage Probabilities, Calendar Year Models:
Pickups.

Not surprisingly, the patterns and trends in the survival curves are also generally similar to those
seen in the trend models (Figures C4b to C6b). As might be expected from the greater flexibility
in the Calendar Year models, there is more variability from year to year, especially for the
younger ages.
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Figure 14. Weighted Logistic Unconditional Survival Probabilities, Calendar Year Models:
Passenger Cars.
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Figure 17. Trends in Median Expected Survival: Calendar Year Models.

Trends in median survival rates based on the Calendar Year models (Figure 17) are also similar
to those based on the Time Trends models (Figure 10) except for the greater year-to-year
variability allowed by the Calendar Year models. Once again, while linear models fit the
passenger car and SUV and van models well, a quadratic curve provides a much better fit to the
pickup truck values. The predicted increases in longevity are almost identical to those estimated

by the Trend models.
Extrapolating Calendar Year Survival Curves to 2075

Current trends toward increasing vehicle automation, connectivity and electrification suggest
that the content and durability of light-duty vehicles may continue to increase for decades.
Assuming that the half-century trend of increasing longevity continues at the same rate for
another half century into the future, the logistic survival functions can be extrapolated by
including trends in parameter values. Beginning with the calendar year-specific scrappage
curve, the extrapolation process consists of three steps:

1. Calculate unconditional survival curves for 2003-2020 using the calendar year
conditional survival probability (scrappage) curves;

2. Fit simplified, 3-parameter unconditional logistic survival curves to the numerically
calculated unconditional survival curves and verify the goodness of fit;

3. Using the 2020 simplified survival curves extrapolate future year-by-year survival curves
by adjusting the parameters to insure that the expected median lifetime increases by

0.67%l/year.



The unconditional probability of a vehicle surviving to age a is calculated using equation (5),
where the conditional probability of surviving to age a given survival to a-1is p(ala — 1), and
the unconditional probability of surviving to age a is P(a).

P(@) = &opla—ila—i—1) (18)

The fitted unconditional survival function is a cdf and requires only three parameters: u, o and k,
as shown in equation (19). In the logistic probability distribution, the mean, median and mode
are equal to the location parameter, u. In the modified logistic survival function the median of the
cumulative survival function is the point, x, at which the cumulative function equals 0.5.

1

0.5 = T earerx (19)
Solving for the median expected lifetime, x:
x=pu—oln(l-k) (20)

The historical studies cited above indicate that the median expected lifetime has increased at an
average annual rate of approximately 0.67% per year. Because the median expected lifetime
depends on all three parameters (u, o, k), there are many combinations of the three that could
produce the desired increase in median expected lifetime. Assuming that this trend is equally
driven by the two right-hand-side terms in equation (20), y should increase by 0.67%/year and
oln(1-k) should also.

x; = 1.0067x,_, = 1.0067 (1 — oln(1 — k) = 1.0067u— 1.0067cIn(1 — k) (21)

Since there is no obvious reason to change one parameter more than the other, it again seems
reasonable to assign an equal rate of increase to the two components, ¢ and In(1 — k). This
requires multiplying o by sqrt(1.0067) and solving for a value for k; that makes:

In(1-k¢)

e (1.0067)%> (22)
No unique ratio of k; to ki1 solves equation (22) for all time period. Instead, because the values
of k in the fitted survival curves range only from 0.02 to 0.06, we set the ratio ki/k:w.1 = k.
1(1.0067)°® as an approximation. Although solving for a constant ratio of ki/k..1 does not give an
exact solution for all forecast years, it changes the ratio of logarithms by only 0.001% for cars up
to 0.005% for pickups over the period from 2020 to 2075. In terms of the percent change of the
annual rate of change (approximately 0.33%/year) the error ranges from about 0.5% to 1.5% of
0.33%. Thus, ki = ke.1(1.0067)°* for all t, is used to approximate equation 22.

Because vehicles are sold incrementally in the initial model year, and because a significant
number of vehicles of any given model year are sold in the year following their model year, the
first two years of data were not used in the statistical estimation of scrappage functions. In
calculating scrappage and survival rates using the estimated scrappage functions, we assumed
no vehicles were scrapped during the transition from age 0 to age 1. In fact, a small number of
vehicles are scrapped in their initial year due to severe crashes and other causes. To reflect
this, we adjusted the survival curves to include a 0.5% scrappage rate in their first year. The
resulting projected unadjusted and adjusted survival curves are shown in Figures 18-20.
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Figure 18. Adjusted, Projected Survival Rates, Calendar Year Models: Passenger Cars.

Survival Rate

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Adjusted, Projected Survival Rates: SUVs & Vans

2075 Adi.

2075 Proj.

2050 Adj.

2050 Proj.

2020 Adi.

2020 Proj.

2020 Est.

10 20 30 40
Age

50

Figure 19. Adjusted, Projected Survival Rates, Calendar Year Models: SUVs and Vans.
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VIil. DISCUSSION

The enhanced logistic function with calendar year fixed effects, linear trends in k, y, o and the
asymptote, and exponential trends by model year describes the data well, despite some
patterns that appear in the residuals. However, these patterns are far less pronounced than
those in the residuals from the Weibull function. Weighting observations by the numbers of
vehicles in operation by vehicle type, age and calendar year yields small improvements in mean
square errors of the logistic models, with the noticeable improvements in fits for younger
vehicles at a cost of somewhat poorer fits to vehicles more than 25 years old.

The results strongly support the following descriptive findings:

1.

Conditional scrappage rates are different for passenger cars, SUVs and vans, and
pickup trucks, with pickups having the lowest scrappage rates and longest survival
times.

Over the 2003-2020 period, expected lifetimes increased by several years for all three
vehicle types, although the increase is not constant and uniform from one year to the
next.

Light duty vehicles now have expected lifetimes of 18-27 years, with potentially
important implications for public policies that regulate new vehicles and rely on stock
turnover to achieve their full effect. The effect of increasing vehicle age for all vehicle
types has been amplified by the increased market share of light trucks.

In addition to the trends towards increasing life expectancies, scrappage and survival
rates vary from year to year, indicating that factors such as new vehicle prices,
macroeconomic variables and other secular shocks have important effects on vehicle
scrappage.

It is tempting to assume that the calendar year effects and trends incorporated in the statistical
scrappage models represent secular changes in prices and economic factors, while the model



year variables reflect technological changes in vehicle durability embodied in the vehicles
manufactured in a given year. However, vehicle prices may also vary by model year for various
reasons, including content such as luxury accessories that would not affect technical durability.
Likewise, technological change over time might also affect the maintenance and repair of
vehicles across model years. This study has not attempted to identify the causes of changes in
vehicle scrappage and survival over time but only to describe them.

Increased vehicle survival rates imply that it will take more time to turn over the stock of light
duty vehicles. From a public policy perspective, it will take longer for the benefits of increased
fuel economy, reduced pollutant emissions and improved safety features to achieve their full
impact. The changes in scrappage rates over the past two decades suggest that nearly
complete replacement of the existing light-duty vehicle stock may take 10% to 20% longer today
than it would have twenty years ago. The persistence and relatively consistent rates of
increasing vehicle longevity over the past 70 years suggest that vehicles may continue to have
longer lifetimes well into the future. Further increases in vehicle content through automation,
improved crash avoidance, and the transition to electric drive could be driving forces for greater
life expectancy in the future. Whether past trends will continue is not known, and whether policy
intervention to accelerate stock turnover would be beneficial is an open question. Answering
such questions will require a better understanding of the causes of increased vehicle longevity.
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APPENDIX A. RESIDUALS FROM WEIBULL MODELS

Although the estimated Weibull conditional scrappage models produced high adjusted R? values
and generally, highly statistically significant coefficient estimates, examination of their residuals
plotted against vehicle age revealed much more pronounced systematic patterns than are
evident in the residuals from the logistic models (see Figs. 1-3, above). The patterns clearly
indicate that the curvature of the Weibull function periodically under- and over-predicts
scrappage rates for all three vehicle types. This effect persisted whether or not calendar year
fixed effects and model year trends were included, and could not be corrected by weighting the
data, for example by number of vehicles in operation. The residuals from logistic models show
far less pronounced systematic lack of fit and have slightly higher R? values, lower mean
squared errors, and improved significance levels for estimated coefficients.
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Figures A1, A2, A3. Residuals vs. Vehicle Age for Weibull Conditional Scrappage Functions
with Fixed Calendar Year Effects and Calendar Year and Model Year Coefficient Trends.



APPENDIX B. RESULTS OF STATISTICAL ESTIMATION OF
LOGISTIC MODELS WITH TIME TRENDS
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0.000 .2B95102
0.000 .0101685
0.000 24.36088
0.000 .2255641
0.000 48.6427
0.000 =3.338B1

TO3144375
0.9881
r.9891

0054594

-4.85a+0%

Interval]

2.057794
2.028501
2.023111
2.014758
1.95677
.B9B7E4
.908375
.B872538
. 851535
.BB5408
LB623448
428409
. 290082
.108435
.120525
.DEe5548

e =l =l S N S

.9724267
. 0202738
5.722698
. 2900062
.0101842
24.36233
2256815
4B.EB97
-3.336987



APPENDIX C. SCRAPPAGE AND SURVIVAL CURVES OF
TIME TREND MODLES BY CALENDAR YEAR

Logistic Conditional Scrappage Probabilites: Passenger Cars
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Figure C1a. Passenger Car Scrappage Rates vs. Age: Unweighted Data



Weighted Logistic Conditional Scrappage Probabilites: Passenger Cars
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Figure C1b. Passenger Car Scrappage Rates vs. Age: Data Weighted by Vehicles in Operation.
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Figure C2a. SUV and Van Scrappage Rates vs. Age: Unweighted Data



Weighted Logistic Conditional Scrappage Probabilites: SUV & Vans
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Figure C2b. SUV and Van Scrappage Rates vs. Age: Data Weighted by Vehicles in Operation.

Logistic Conditional Scrappage Probabilites: Pickups
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Figure C3a. Pickup Truck Scrappage Rates vs. Age: Unweighted Data



Weighted Logistic Conditional Scrappage Probabilites: Pickups
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Figure C3b. Pickup Truck Scrappage Rate vs. Age: Weighted by Vehicles in Operation.
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Figure C4a. Passenger Car Survival Probability Function: Unweighted Data.
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Operation.
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Figure C5a. SUV and Van Survival Probability Function: Unweighted Data.

WEIGHTED Logistic Unconditional Survival Probabilites: SUVs and Vans

15

20

25
AGE

30

35

45

50

15

20

40

45

weseie 2003
-=-=-2004
— —2005
—2006
- 2007
-=-=-2008
— —2009
—2010
2011
2012
2013
-2014

— —2015
—2016
wioisns 2017
===2018
—=—201%
—2020

Figure C5b. SUV and Van Survival Probability Function: Data Weighted by Vehicles in
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Figure C6a. Pickup Truck Survival Probability Function: Unweighted Data.
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APPENDIX D. CALENDAR YEAR SCRAPPAGE MODEL PARAMETER
ESTIMATES

Weighted Nonlinear Regression Results

Passenger Cars

2020
Nonlinear regression Mumber of obs = 1083416219
R-squared = @.9963
Ady R-sguared = B.99563
Root MSE = . BB52495
Res. dev. = =5.938488

Legistic Serappage Functions by Year: PASSCAR  Thursday June 15 89:45:82 2822

| Robust
scraprate | Coefficient std, err. t P:!t| [95% conf, interval]
fk LB6978 BZopaTo 2.48  B.816 LB128472 . 1267129
fs5 LA653117 LB126327 B.62 @.B8oe 1388324 . 2877511
Smu 23.51246 » 1123496 289,28 9.4000 23.292%6 23.,73266
/a -, 3252457 LB72258 -4.58  9.008 - . 4668689 -.1836226
2019

MNenlinear regression Number of obs = 184785583

R-squared = 8.9925

Adj R-sguared = @,9925

Raot MSE = - BEELE1S

Res. dev. = =-G.T7@c+28

! Robust

scraprate  Coefficient std. err. t Pslt| [95%X conf. interwval]

L LBETARBI  .B445682 1.96  @.858 . BEB1882 1748122

/s » 2848469 . B28611 7.16 @.088 . 14B7T@5 . 2689234

fLLE 12.48463 1267341 177.49 D.000 22.24624 22.74392

fa -. 2752942 . 178987 -1.61 @.187 -.6184225 .B558341



Nonlinear regression

2018

Number of obs =
R-squared =
Adj R-sguared =
Raot MSE =
Res. dev. =
Pslz] [95% conf.
@8.827 LBe183T78
8. 088 JERB17EZ
B.Bea 21.98951
@, Bed -.4164883

Rabust
scraprate Coefficient std. err. t
Mk LB1641B3  .8@74392 2.21
/s «AATTETE .@158929 T.68
Jmu 22.28BE7 .1935544 115.186
fa = 3792775 LB189814 -19.98
2017
Monlinear regression
i Robust
scraprate | Coefficient std. err. t
k +2271633 LB4818% 4.72
/s (2558884 8136249 18.78
Jmu 22,.35462  .BMBEER3 546,75
fa | . 2BBE1E . 2316EET7 1.25
2016
konlinear regression
Raobust
scraprate  Coefficient std. err. t
s 21917423 .B4pE915 &4.89
/s + 2526265 LEL56691 16.12
S 22.1e814 .B88211 250,54
fa 16215953 2302425 @.78

Kumber of obs =
R=squared =
Adj R-squared =
Root MSE =
Res. dewv. =
Pl [85% conf.
(=] 1328714
a.ae8 . 229178
2,908 22,27448
B8.213 - . 1654856
Nunber of obs =
R-squared =
Adj R=squared =
koot MSE =
Res. dev., =
Palt| [95% conf.
&.808 «B998366
[ =1 ] L 2219157
o, 008 21.92725
B.481 - . 2BOBERS

184457115
B8.9371
B.9971

.BB42939

-7.45¢+08

interval)

83893987
» 1473395
22.66823
- 3a2e747

183645387
8. 9985

. 5985
.BR29891
-B.32e+838

interval]

.3214551
.2B25848
22,43476
L TA27175

ladlgedle
&.9958

8. 3080
.Bp32913
-7 98erld

interval]

283648
2833373
22,27383
+B13467



Nealinear regression

scraprate

JK
i
J
fa

Coefficient

4429236
3166654
22.33773

1.37451

Nonlinear regression

scraprate

ik
fs
fmu
fa

Coefficient

-, 434433
-.3188343
21.88346
-1,421698

2015

Robust

Monlinear FEng$51Dﬂ

scraprate

Ik
/s
Jmu
fa

Coefficlent

-.2187852
=.2354928
22,52929
-. 2286538

std. err. t
LBTARTSS 6.27
LB1B38E3L 29,18
+1385568 161.21
. 3IB30B28 3.54
2014
Robust
std. err. t
114618 -3.79
8166178 -18.78
2567151 84.93
L BEITEAS -2.15
2013
Robust
std. err, t
8292424 =7.48
BBT5E26 =31.14
1276153 176.47
.1313743 =-1.74

MNumber of obs

R-squared -
4d] R-squared =
Root MSE =
Res. dev. =
P2 [t] [95% conf,
2,084 3843933
2. 08a . 295335
2. 828 22,06616
B.B0a 6142684

Number of obs

R-squared

Ad§ R-squared =

Root MSE -

Res. dev. =
Pe | [95% conf.
B. 28 -, 6550801
B, Boo -. 3434846
&, eag 21, 3883
B.832 -2, 728724

Nueber of obs

R-squared

Adj A-sguared =

Root MSE =

Res. dev. =
Pt [95% conf,
B. ega - . 2761833
8. aa - . 2583154
9,088 22,2717
a.882 - ABE1427

182862147
@.9956

B, 9956
,B4AT48E
-7.12e+88

interval]

.5B14518
.33T9958

22,6833
2,135553

181968168
@,9924
8, 3924
LBa6aa17
-6.43e+08

imterval]

- 2837858
-. 2782641
2238661
-.1226723

1le2g27462
B8.9981
@8.9581
.B@35789
-7.TAe+BE

interval]

-,.1614751
-. 2286763
22.77e41
LB288351



Menlinear regression

scraprate

/% |

/s
Smu

fa |

| Coefficlent

-, 1368163
-, 2282358
| 22.36648
-, 1278217

Menlinear regression

scraprate

—t— —

Mk

s

fmu

fa |

Coefficient std. err.

-.36BB8313
- 2789636
22.52482
-1.214681

Nonlinear regression

scraprate

Ik
s
Smu
fa

Coefficient

-.4544739
-, 2917831

21,63879
-1.377734

2012

Robust
std, err. t
. B364459 -5.38
0183582 -22.85
1563114 143.49
L1578891 -8.81
2011
Robust
L
LBBas7T11 -4, 57
,B122888 -21.98
, 2338926 96,38
ATI4245 -2.57
2010
Robust
std. err. T
LBET4923 -6.73
L BE9EBRT ~3@.39
L1226291  176.39
. 3892425 =3.54

Wumber of obs

R-sguared =
Adj R-squared =
Root MSE =
Res. dev. L
Pt [95% conf.
8.9084 -. 267449
a.0e8 -, 2485259
a8.08a 22.86012
9.415 - 4356714
Number of obs =
R-squared ]
Adj R-squared =
Root MSE =
Res. dev. =
Pt [95% conf.
9,888 -.5269436
2,988 -, 2941512
a.98a 22,8656
a.918 -2,142496
Mumber of abs =
R=squared A
Ad] R-sguared =
Root MSE L]
Res. dev. -
Pt [25% conf,
8,888 - 5867585
8,888 -, 3186881
2,888 21,3944
a.0e8 -2.862237

184541437
B, 9560

8, 9968
+BB52538
-7.83e+88

interval]

-. 1245836
-. 2879538
23.67285

188828

1BGE8G9E8
@.9543
B.9343
. BB53593
-7.14e+88

interval]

=, 2187189
-. 2459799
22,898244
-.2BE785E

186445824
B.9979
B.9973

LBBIGETLL

-7 . 96e+08

imterval]

-.3221914
= . 272066
21,87114

-.6932315



Menlinear regressicn

scraprate

ik
/s
Jmu
fa

Coefficient

= 3773886
-, 2784151
20.,94271
-.BBO272

Monlinear regression

scraprate

fk
is
Jeu
fa

Coefficient

- . BB@2235
. 3353762
21.18137
-3, 228065

Monlinear regression

scraprate

K
fs
fmu
fa

Coefficient

-.B358752
=.3343887

28.91541
=2.831184

2009

Robust
std. err. T
BTBLE2T -4,83
8132718 -208.98
1636121 12E.8@
3789872 -2.48
2008
Robust
std. err. T
1566588 ~5.62
LB122651 =27.34
.1594589 132,33
LTIBZETI -4.84
2007
Robust
std, err. t
+1212575 -6.89
.eaa742  -33.52
L138511 168.26
5131384 -4,62

mumber of obs

R-squarad -
Ad] R-squared =
Root MSE =
Res. dev, =
[95% comf
- 5304968
-, 324273
28.62203
-1.61R237

Mumber of obs =
R-sguared =
Adj R-sguared =
Root MSE =
Res. dew. =
et [25% conf.
9. 8ed -1.187275
9. 088 -.3594153
@.088 2@8.78883
'B-! m '“ 0 ?52523

dymber of obs =
R-squared =
AdY R-squared =
root MSE =
Res. dav, -
Pt [95% conf.
2,008 -1.,873536
B, 008 - . 3538578
8. 000 28, 65962
8. 008 -4,832833

185377382
B. 9965

B. 9965

. BB51556
-7, 22408

interval]

=, 2241846
-, 2524828
21,26338
-, 1623872

106672726
.9969
@.9969

. 8849455
=7, 38e+88

interval]

=, 5731838
-.3113311

21.4139
-1.663687

187205676
@.9977
B.59977

LeRda823

-7.63e+88

interval]
- . 5982148
-, 3147596
21.17121
-1.G29375



Monlinear regression

2006

Nustber of obs

Robust

scraprate Coefficient std. err. t
fk -. 7432878 L 1A58E55 -7.87
] - . 3295666 LB094E34 -34.75
fmu 28. 78865 L1275647 162,28
fa -2.225182 L 5841584 -4,41
2005
Nenlinear regression
Reobust

scraprate Coefficient std. err. t
fk -. 7355838 P 0 e -6.78

s = 332BE66 L Bea9733 -33.38

Jmu 28.68871 .1321818 155,55

fa =2.189858 .5258928 -4.17

2004
Menlinear regression
| Robust

scraprate  Coefficient std. err. t
/K -.B6@6134 1455649 =5.91

/s -, 355843 8121353  -29.32

Smu 20.36526 .1263953 161.12
fa -2.638728 JETBZ596 -3.54

R-squared =
Add R-squared =
Reot MSE "
Res. dav, a
Pt [95% conf.
B.e8e -.9492515
B.08a -.34B1536
B. 088 28.45063

]

=3,213218

Number of abs

R-squared =
Adj R-sguared =
Root MSE -
Res, dev. -
Pt [95% conf,
. ead -, 9585523
a.ead -. 3516338
d.e0a 28,3418
a.888 -3.213921

Number of obs =

R-sguared =
&d] R-squared =
Root MSE =
Res. dev. =
Frlt| [a5% conf.
@, aaa -1,145915
o, 8e8 - 37O627T
B. 08 2811753
2,800 =3.952413

188323347
@.8877
@.9977

. Ea44806

-7.75e+08

interval]

-, 5373241
- . 3164795
8. 95867

-1.236985

189288715
@.9977
B.9977

Laai40a7
=7.84e+08

interval]
-, 5204554
-.3125393
20.85963
-1, 168696

189925273
8.9577
8.9977

.BB44135

-7 .96e+88

intervall

-. 5753114
-.3328583
2861239
-1.325843



manlinear regression

scraprate

Ik
/s
Smiy
fa

2003

Robust

Coefficient std. ers.

-.B281319
-, 3619242
28,89417
-2.63331

Nonlinear regression

scraprate

Tk
/s
fmu

fa

Coefficient
=.2137639
=, 2479397

231.6T&B6
- . 3992518

konlinear regression

scraprate

ik
/s
iy
fa

Coefficient

-, 2813431
=.3R41296
22,66383
-.9919975

. 1551695
.8145938
+115551
7259836

t

=5.34
24,88
173.98
-3.63

Humber of abs =
R-sgquared =
Adj R-squared =
Root MSE =
Res. dey, =
Prlt] [95% conf.
@.eee ~1.132258
@.008 - 3085376
@.eae 19.86769
@008 -4, B56855

SUVs and Vans

MNusitber of obs =
A-squared -
Adj R-sguared =
Root MSE =
Hes. dev. e
Pxt| [35% conf,
0.881 -.3365546
B. g8 -.2819144
B.88a 23.4298
B. 264 -1. 899886

2020
Robust
std. err. t
.BE2EE9E -3.41
LB173343 =14, 38
1268549 187.83
L 3574117 -1,12
2019
Robust
std. err. t
B68232 =d4,12
LB172395 =17.64
889753 252,53
JAES1468 -2.84

Mumber of abs =
R-squared L
Adj R-sguared =
Root MSE =
Res. dew. -
Pt [95% conf.
8,088 = 4158753
B.088 -.3379184
8,898 22,48912
@.841 -1, 942867

118252292
2.9988
a.9988

L BE395981
=B.23e+88

intervall

- 5248853
- . 3333208
28, 31865
-1.218566

85,427,598
8.9959

B. 59859

. BBI94E
-5.62e+88

interval]
- . 8589333
- 21389651
23,92392
L3812272

81,362,354
8.557@
B.9878

. BBZT955
-6, Ble+88

interval

=-.1476189
= 2783488
22,8493
-.B4112E



kanlinear regrassion

scraprate

[k
I's
Sy
fa

Coefficient

-, 1926617
-,2515318
23,0354
-. 3728361

Nenlinear regression

scraprate

ik
/s
L T]

fa

Coefficient

=. 5524669
-, 3312868
23.81577
| -2.683918

Monlingar regression

scraprate

Tk
/s
fmu
fa

Coefficient

- . ldeaze7y
-.314G8BG

22.24862%
-1.233838

Robust
std.

. 0588465
LB152634
.15719492
324369

Robust
std.

. 1148147
8132347
1645812
«B246519

Robust
std.

45?35911.

8148186
1748348
5082165

2rr.

err.

err.

2018

-3.79
-16,48
146, 33

-1.15

2017

-4.E1
-25.83
139.84

-3.25

2016

T

-4, 68
-22.46
127.83

-2.43

Mumber of obs =
R-squared =
449 R-sguared =
Root MSE =
Res. dev. =
Pt [95% conf.
B.ead -,2923158
B, BEa -. 2814475
a.ea0 22.69543
@, 258 -1,868588
Nurber of obs =
R-sgquared =
adj R-squared =
Root MSE -
Res. dev. -
Pt [95% conf.
a.eaa - 7774995
9. 88 - 3572263
2. 888 22.6932
8,881 =i, 299306

Number of obs =
R-squarsad o
Adj R-sguared =
Root MSE =
Res. dev. =
Pxlt| [95% conf.
8. 888 - 4B4B44E
@, 888 -.34286B2
a.088 21.98519
@.815 -2.229924

76,991,371
8.9378
8.9978

.8031303
-5.55e+88

intarvall

-.Be3083c
-, 2216161
13.31164
2629155

73,365,177
8.9971
8.9971

.BE29428
-5.340+88

interval]

-.3274343
-.3853472
23.33835
-1.86673

78,398,879
#5958
8,9968

8829779
-5.18e+@6

interval]

=, 1951965
-. 2871483
22.5874
-. 237752



wonkinear regression

scraprate  Coefficient
fk =-6,195514
/s -. 5788485
Jmu 23 .BE636

fa | -48.72751

Menlinear regression

scraprate

Ik
/e
P T
fa |

Coefficient

=, 463861
-.3283813
22.37762

=1.475667

MNgnlinear regression

screprate

'k
fs
S
fa

Coefficient

-. 392643
=. 2757845
23,15836
-1.1633863

2015

Robust
std. err. t
3.713987 -1.67
LB529143 -9.53
1225281  18E.25
26,4158 -1.542
2014
Robust
std. err. t
- 186855 -4,37
0158216 -20.24
.198715%4  117.33
596882 -2.47
2013
Robust
std. err. t
+OP3GRE3 -4,19
8131428  -20.98
. 258893 92.31
5389583 -2.19

2012

Mumber of obs =
R-squared =
Adj R-sguared =
Ract MSE L]
Res. dev. -
Pt [95% conf,
B.e95 -13.47479
B, BEd -.bE82TR3
B.@aa 21.82621
@.123 -92,.58152
Mumber of obs =
R-squared =
Adj R-squared =
Root MSE =
Res. dev. =
L) [95% conf
a.8ae -.6719933
0. 8ae -.351311
&. 880 22,8938
B.813 -2.64573
Number of abs =
R-squared =
Adj R-squared =
Root MSE =
Res. dev. =
Px|t| [95% conf
. Baa - .5762688
8,808 -, 381544
2,808 22,66762
2.823 - 2. 204886

58,818,189
B.9B65
B.9865

.BB62732
=3.37es8

interval ]
1. 883766
- 4534187
23, 39652

11.8465

65,243,984
8.9953
@.9953

. BB49565
-4, 350+88

+ Lmterval]

- 2568137
-. 2892516

22.75149
- 3A56838

63,419,357
B.9952
8.9952

0842876
-4, 15e+08

. interval]

-, 2898173
-. 258825

23,6511
-.1227196



Nonlinear regression

seraprate

Tk
s
fmu
fa

Coefficient

. 2514569
. 2419526
23, 34447
.555833

Nonlinear regression

scraprate

ik
fa
fmu
la

Coefficient

=.35987378
-. 2733752

23 .53865
-1.524333

wenlinear regression

scraprate

i
f5
fmu
fa

Coefficient

LT3T70E26
.3124852
22.26298
2.985833

Robust
std. err, t
871368 3,52
8144834 16.71
. 3888543 75.78
L 4845423 1.37
2011

Robust

std. err. t
11561686 =3.36
LB154868 -16.68
3899148 75.95
LT584367 -2.83

2010

Robust
std, err. t
1978882 3.73
150589 28.73
. 2574436 B6.48
1.129618 2,64

2009

Number of obs

R-squared =
Adj Re-squared =
Root MSE =
Res. dew. =
Py | t] [95% conf.
8. 889 .1115781
a.88a L 2135657
@.08a 22,7487
&.169 -. 2378552

Munber of obs
A-squared =
Adj R-sguared =
Root MSE =
Res. dew, =
Pt [95% conf,
B.e81 - . Gli4p84
8. 008 -.3855318
B. 888 22.93123
B, 842 -2.935162

Number of obs =
R-squared =
Adj R-squared =
Root MSE =
Res. dev. =
Pt [95% conf,
a.88e 3583813
o, 808 L 2B2ETBG
o, e 21.7584
0. eas 7718223

62,660,368
@.,94835
@.95935

. BB46857
-d4 . BBe+8E

interval]

. 3913357
. 2783396
23,94825
1,348721

- 62,677,207

a.9521
8.9521
8843388
-4, BBe+88

interval]

-.1la3ea72
-. 2412185
24, 14687
-.@53584

5%, 968, 569
B.59535
B.3935

.0049387
-3,77e+08

interval ]

1.125664
« 3415398
22. 76756
5.195843



MNonlinear regression

scraprate

fk

i3
fmu

fa

Coefficient

B2BBE11
1221964
21.89181
=.3791474

Nenlinear regression

scraprate

Jk
fs
fmy
/&

I Coefficient
2.48136
3948765
22.00247
1383288

Nonlipear regression

scraprate

fk
/5
S

fa

| Coefficient

3.328234
«416E826
21.85051
17.68993

Robust

std. err.

-B195243
LB3A54TTL
-2TA26B1
8377274

Robust
std.

.BR@Ta1s
. B236347
. 2247897
4.75352

Robust

std. err.

.B787261
-B2B3519
-2841517
5.213885

err.

1.82
3.44
76.59
=18.85

2008

3.18
16.67
97.92

2.74

2007

2006

Number of chs =
R-squared =
Adj R-squared =
Rost MSE =
Res. dev. =
Pxitl [95% conf.
@, 386 -, B1E2658
©@.881 +B526615
@. 000 20.55345
2. paa -.4538918

Number of obs =
R-sguared -
Adj R-squared =
Root MSE =
Res. dev. =
P |t| [95% cont,
B.2a2 9118378
8. 6o -3477534
8,080 21.562685
a.8a6 3,715353

Nunber of obs =
- squared -
Adj R-squared =
Root MSE -
Res. dev. -
Pt [95% conf.
8. 9a0 1. 597963
B, Ban 3769136
8. epg 21.49938
8. 881 7.4789

37,467,696
a.9797
8.9737

. BB34851
-2.8%e+88

interval]

+B582681
L 1917384
21.52856
=. 3952829

55,479,582
8.9923
B8.9923

. BB542585
-3.430408

interval ]

4.858883
4483996
21.44289
22, 34881

52,810,255
@,9927
8.9927

. 0053749
-3.25e+88

interval]

5.R42586
4566917
22.295964
27.98B35



Nonlimear regression

scraprate

Ik
/s
fmu
fa

Coefficient

1,975264
. JBTOHG
21.91629
9,83916

Menlinear regression

scraprate

ik
fs
fau

fa

Cosfficient

1.944391

. 397885
21.73648
18.81419

Nonlinear regression

scraprate

[
/s

Sy

fa |

. Coefficient

Z.457624
4216241
21.79385
14,81393

Robust
std.

L 4237845
+8153581
L 28323591
2.511656

Robust
std.

LA928851
B1EZEE7
. 1981287
3. 064456

Robust

5td. err.

. T408a55
LB2a3661
- 1833678
5. 189857

err.

Brr.

4.66
25.25
187.81
3.92

2005

3.95
21.85
188.71
3.27

2004

T

3.32
\.7a
118.85
2.74

2003

Number of obs =
R=squared =
Adj R=-squared =
Root MSE =
Res. dew. =
Pt [95% conf.
8,888 1.144819
a. 000 3575283
2.8a8 21,511894
8. 820 4, 9164495

Nunper of cbs
R-zauarad
Adj R-squared
Root MSE
Res. dev.

Pyt

a.ae8
8. aeg
8. 8ea
8. 8e1

[95% conf.

98308788
L I622084
21.34817
4. 087546

Mumizer of obs
R-squared
&di R-squared
Root MSE
Res. dev.

Frlt]

B.gaL

L=

. 0ea
. a8
« BBG

48,439,270
B, 9947
a,9947
. BRi26

-3,250+08

imtervall]

2.88571
AL7E3LT
21.38853
14,76192

44,914,588
&.5935
@.9935

.8847154
-2.99e+08

interval]

2.988783
4335685
22.12473
16.82843

41,873,642
8.9939
8.9939

BB428599
-2, B4e+B8

[95% conf. interval]

1.6687239
-3B17872
21.43446
3.958791

3.988883

LAG1541
22.15325
24.82905



Nenlinear regression

Robust
scraprate  Coefficient std. err. T
fk 2.139445 6203999 3.43
is .4139546 L @181947 22.75
S 21.63294 . 1683685 134.9@
fa 13.354 4.816551 2.77
Pickups
2020
Nonlingar regression
Robust
scraprate  Coefficient std. err. t
Ik 6294634 1590454 3.96
/5 2872818 .@141785 28, 26
P 28.72229 »2136118 134.46
fa 6. 100428 1.B13667 3.36
2019
Monlinear regression
Reobust
sCraprate Coefflcient std. err. t
K 1.42862 611815 3.18
fs 3438781 8191824 18,88
fmu 28.98619 2275166 127.48
fa 2.84

19.681656

£.0@0434

2018

Mumber of gbs =
R-squered =
Adj R-squared =
Root MSE -
Res. dew. =
prlit] [95% comf,
2,88l .9135214
2. 888 .3TBI936
2, e8a 21.31864
2.886 3.913729
Number of obs =
R-squared =
Ad] R-sguared =
Root MSE =
Res. dev. "
Palt) [95% conf.
2,808 L3177a82
a.800 L 2594926
8, a8a 28.38362
8,081 2. 545786

28,426,218
8,9952
8,9352

8041116
-2.02e-+08

interval]

3.,347369
LAA496156
21.24724
22.79426

38,253,648
2.9964
0.59964

DB22465
=3.18e+88

interval

G411866
3158711
29.14806
9.655151

Number of obs = 32,997,822

R-squared =
Add R-squared =
Root MSE =
Res, dew. -
Pl [95% conf.
2.892 5288779
8.890 -3864382
8. 800 28.54827
@.8as 6.85942

@.5948
8,594
.Ba32139
-2.68e+88

interval]

2,332363
L3813181
29.43212

33,1439



Monlinear regression

sCraprate

Ik
Fi-]
Smu

ia

Coefficient

~ETSBTTT
. 2483929
2B8.85838
2.177838

Monlinear regression

—

scraprate

i
/s
JSmu

Jfa

Coefficient

-3145267
- 2473635
2E.48578
2.659323

MNenlinear regressicn

scraprate

i
s
fmu
fa

Coefficient

-, 3544481
-. 2673113
27.272%6
-3.438316

Robust
std.

-B942283
.B1B92239
1718711
1.842688

Robust

std. err.

LBT729874
-B118635
.1926833

.B4B4A21

Robust
std,

LAT26698
L@118633
1473816
.93TR2EL

err.

Brr.

2.93
13.13
163.25
2.09

2017

4.31
29.85
147.598
3.13

2016

t

-4, B8
-24.1B
185.85

=3.67

2015

Mumther of obs =
R-squared =
Adj R-squared =
Root MSE s
Res. dev. =
Px|t] [95% conf.
B.083 L@318894
8. 968 (2113827
@, Bea 27.72153
a. 37 L 1335655
Number of obs
R-squared =
Adj R-sguared =
Roct MSE =
Res. dew, =
P t] [25% comf.
a,eed L 171474
[==]= ] L2241114
8. Bpa 28.83328
8. 082 9954485
Wumber of abs =
R=squared =
Adj R-squared =
Root MSE -
Res. dewv. =
Pt [95% conf.
8, 888 - A9ERTHEZ
a. 688 -.2B8948
. a8 26,9841
-5.276419

.08

Not estimated due to anomalies in data.

2014

3w, 229,459

8, 9959

@, 2059

. BATESEE
=3.159¢e488

interval]

LA60346
. 2854831
28.39525
4.228512

= 34,643,777

@.5972
@,59972
BR2LR52
-2,91e+88

interval]

LASTSTS4
. 2786156
28.7ER27
4.322198

36,116,198
8.9973
@.9579

. B19757
=3, 28e+88

interval]

-.212608
- . 245B2TS
27, 56182
-1.6@88213



Monlinear regression

Mumber of obs =
R-squared =
Adj R-sguared =
Root MSE =
Res. dev. =
Pt [95% conf.
2. 0a0 -. 9951559
2. 038 =-,3@33852
B.838 27.82723
8. 801 -8 . 664386

Murber of obs =
R=squared

Adj R-squared
Root MSE

Res. dev.

Pt [95% conf

. eea
8. pee
9,88
a.8aa

- 2822087
- 2BBB5TE
29,39431
-1.453551

Robust
scraprate Coefficient std. err. t
K - 6779479  .16518438 =4.1%
fs - . 2883241 LJB117661 -23.82
Smu 28.3913 . 2877528 9B.65
fa -5.527781  1.688379 «3.45
2013
Monlinear regressicn
Robust
scraprate  Coefficient stg, err. 1
Tk -.2282721 . @3leae0 -6.97
/s -.1982386 9954221  -36.56
Sy 29.7471 1799958  165.17
fa -.9611648 2512221 -3.83
2012
Menlinear regression
| Robust
scraprate | Coefficlient std. err. t
Tk =-.1832254 8298977 -6.13
fs | =.1853388 . BB6TA1E -27.49
Jmu 29, 36086 . 2894381 148,19
fla -. 7704847 . 2384173 =-3.34

2011

Humber of obs
R-squared

Adj R-squared
Root MSE

Res. dev.

hnwm ¥

-, 2418278
-.1985541
28.95839
-1,222994

[95% conf.

43,493,261
8,9958
8,9358
.BA2082
-3.53c+88

interval]

- . 3687398
-. 257263
2B.95536

-2,391816

43,230,627
@.9984
@.9984

DB2093
-3.820488

. interval]

-.1583356
=. 1876834
36.89988
- AGETTES

43,692,959
@.5982
@.9982

8022491
-3.B1e+88

interval ]

-.124531
-, 1721235
29.77134
-, 3188751



Monlinear regression

scraprate

L
fs
fmu
fa

Coefficient

-.233296
-, 2684969
28.51954
-1,242983

HWenlinear regression

scraprate

'k
/s
Jmu

fa

= ABTETTS
=, 2414945
27.83545
-3.856254

manlinear regression

sC r'.a|:|r'a1:e-

i
/%
fmu
fa

Coefficient
- 4213184
-.2248931
27 . 24337
-2, 548834

|
| Coefflcient std. err.

Robust
std. err. L
8382122 =6.11
. BB6ERAZ -31.38
(2716684 184,91
3268689 -3.B1
2010
Robust
. @936BE5 =5,28
.BR2E17E  -15.11
. 2148289 126.32
. TEEETED =3,97
2009
Robust
std. err. t
+ 1547153 2,72
LB195776 -11.49
2880246 138,99
1.25629 -2.11

2008

Number of obs =
R-squared .
Adj R-sguared =
Ract MSE =
Res. dev. =
Pt [95% conf.
8, pea - . JEE1985
9. BEa = . 2215587
3, BBa 27,9867
2,588 -1.88283
Murber of cbs =
R-squared =
Adj R-squared =
Root MSE =
Res. dev. =
Bst| [95% canf.
8, 8a8 -.6712836
8. a8 = 2683453
2,08 26.51597
. e =4,563213
Mumber of obs =
R=squared -
Adj R-sguared =
Root MSE L]
Res. dev. =
Pt [95% conf,
8,086 -, 7245548
B, 588 -. 2632646
B, a8 26, 84165
B.0835 -5,111117

44,487,358
@.9976
a,9976

8823223
-3, BGe+A8

imterval]

-, 1584615
-.195443
29.85238

-. 6838952

44,008,913
8.99566
8.9958

B@33249
-3.51e+08

interval]

-.3839513
=, 2226437
27.45482
=1.549294

32,098,996
8. 9958
8.5958

. BBI6296
-2, 36e+08

interval)

-.L1lB@az
=, 1865217
27.65782
-, 18655687



Monlinear regression

Robust
scraprate  Coefficient std. err.
’k -, 7BA6714  .1795552
fs -. 2762821 .8148115
fmy 26.43259 . 2888595
fa -5,755329  1,547262
Monlinear regression
Robust
scraprate Coefficient std. err.
Mk -1.@16758  , 2289EGE
f5 -.2988273  .8133@811
Jmu 25.94086 . 1968159
fa -7.488329  1,943%49
Nonlinear regression

S EE—

scraprate ! Copfficient

fk
fs
fmu
fa

1.128587
-IBESHES
25.61381
H.182281

Robust
std.

. ZB57TB75
814945
JABTTE9E
2.392878

arr.

-4.37
-19.72
126.56

-3,72

2007

-4.44
-22.47
131.88

-3.85

2006

t

3.92
28,54
136.39
3.42

2005

Humber of obs = 42,497,613
A-2quarad = 8.9968
Adj R-squared = B. 9568
Ract MSE = .BB34586
Res. dev. = =3.38e+B8
Py |tf [95% conf. interval]
B. 828 =1.136593 =-.4327497
0,828 =,3837442 -. 2488281
2. 0aa 26.82323 26, 841594
@8.88a -8.787986 -2.722751
Number of obs = 41,578,725
R-squared = a,9972
Ady R-sguared = 8.9972
Raat MSE - . BEZI454
Res. dew. = =-3.45e+88
P t| [95% conf. interval]
9. 088 -1.485524 =, 5RTEIL
. Bed =. 324897 =. 2727577
.08 25.55511 26.32661
B.8ga -11. 2984 -3.67826
Humber of obs = 448,298,865
R-zquared = 8.9979
Adj R-squared = 2.9978
Root MSE - . 8331472
Res. dev. = =3.31e+08
Pt [95% conf, interval]
2. 888 . SBaM54 1.68872
8. 088 L277781E .3352892
B. 008 15.24582 25.98199
B.8a1 3.,492325 12, 87224



Monlinear regression

scraprate

Ik
/s
fmu
fa

Coefficient

1.114997
.3143529
25.19437
8.3863098

Monlinear regression

scraprate

/K
f5
S mu
fa

Coefficient

1,121588

. 324225
24, T6563
8.6BE66E

MNenlinear regression

scraprate

’i
i
fmu

fa

Coefficient

1.32776
« 3424877
24.82753
18.56174

Rabust

std. err.

+ 32689391
LB1TET24
. 218497
2.856588

Robust

std. err.

318411
+B169751
. 2858598
Z.B4278@7

Robust

std. err.

. 3689149
B167828
2272234
3,391257

t

3.38
17.79
119.69
.94

2004

3.54
19,18
128.19
3.86

2003

3.68
28,27
185.74
3.23

Humber of obs = 36,595,747

A-squarad = B.9955
Aidj R-squared = 8,9965
Ract MSE = . BB3467
Res. dev. = =2,95e+88
Pr |t [95% comf. interval]
28.881 LATEZEEL 1.759786
@. 008 L 2797157 . 34899
@. 804 24.78241 15. 68754
8,883 2,787587 13.98521
Number of obs = 38,358,696
R=squared = 8.9962
Adj R-squared = 8.9962
Root MSE = . BE34823
Res. dewv. = =3.11e+88
Pt [95% conf. interval]
a. 00 5814334 1.741742
[ . 2989544 . 3574955
8. ea8a 24.36178 25.16952
B.8a2 3.115865 14, 25827
Mumber of obs = 34,898,893
R-sguared = B. 9962
Adj R-squared = B.5962
Root MSE = ,PB35594
Res. dev, = -2,7d=+08
Pt [98% conf. interval]
8. 824 62838 2,83514
B, 80 « 3075882 . 3733152
B.808 23.,58218 24,47288
2. 88l 4, 315881 17. 68849



Unweighted

Passenger Cars

2020
Monlinear regression Mumber of obs = a7
R-squared - 8.9977
Adj R-squared = B.9975
Root MSE = ,Ba4A5a4
Res. dev, = -368.9554
Rebust )
scraprate  Coefficlent std. err, t Pt [95% conf. imtervall
Ik 1378186 B2E1254 4,87 . ea8 . BEBz982 19373859
/s . 281582 .B1@9153 1B.46 B.8e8 « 17948591 2235149
fmu 23.62673 . 87485654 315.57 B.a8a 23.4758 23.77778
fa =.1825762 1859436 =-@.97 8.338 -.3162319 1118795
2019
NMonlinear regression Mumber of gbs = a5
R-squared = B.9958
adj R-squared = ©.9954
Root MSE = . 8854234
Res, dev. = -346.8167
Robust
scraprate  Coefficient std. err. t Pxt] [95% conf. interwval]
fk 1117686 .B33a289 3.38 a.eaz2 .B458815 1784557
fs 2124859 8162695 13.86 ©.888 1796289 . 2453428
fmu 22 .6H2ISE .111825 284,38 9.808 22,.45834 22.98678
fa -.1383345 LA527213 -8.81 8.37a - 4467614 1788925
2018
Monlinear regression Number of obs = 44
R-squared - @. 9908
Adj R-squared = 8.9830
Root MSE = .@@94572
Res. dev. = =289.4937
Robust
scraprate | Coefficient std. err. t P t] [95% conf. intervall]
[ .B534788 .a312879 1.71 8.e%4 - . B@95987 . 1165584
/s LA723624 .B266TEE 6.46 B.088 -11B4587 2262661
Smu 22,1676 1973826 112,56 ©.080 21.81784 22,61569
fa -.3926383 . 8789592 «5,53 8,880 =, 5360522 - . 2492243

2017



Monlinear regression

scraprate

Jk
/5
S
fa

Coefficient

.33TETES
L 2B22427
22.36533

-B4l7a2

Morlinear regrescion

scraprate

/K
/s
FLT
ra

Coefficient

.1114491
+ 2131235
22.11758
=, 2837511

Monlinear regression

screprate

fk
s
fmu
fa

Coefficient

8181929
122787
22.64574
-, 3839885

Robust
std. err, t
.BESB4 7R 3.97
. 8183216 15.48
LB473258 472,58
3323765 1.55
2016
Robust
ste. err. t
.8257256 4,33
B12B784 17.81
.B849211 268,45
» 187456 -1.98
2015
Robust
std. err. t
8236363 e.77
L B489863 2.46
1841996 122.54
L BEROE21 -6.38

2014

MNumber of obs

R=squared
Adj R-squared =
Root MSE -
Res. dev. =
Pt [95% conf.
a,8ae . 1648453
2. 888 - 2449672
o, 088 22.26985
a.868 -. 8379347
MNumber of obs =
R-squared =
Adj R-squared =
Root MSE =
Res. dew. -
P |t [95% conf,
8. Bea .B553782
8.880 .1938527
B8.008 11.94566
@.866 -.4213653
Number of obs =
R-squared =
Adj R-sguared =
Root MSE -
Res. dev. =
Pt [958 conf
B.446 -.B296564
B.01% .B21594
e.880 22,372185
8. 088 -.5@874324

£

B. 9981
8.9978
.BaL5aa3
-299. 8589

interval]

. 5189875
.3195181
22.46162
1.721419

432
@,9978
B8.95976

L B841463
=345,7972

interval]

.1635279
. 2451944
22,28949
LB138631

@.9795
8.9774
8133477
-247.5911

interval]

LBEGBZ1
. 22398
23.081883
- . 2605287



Nonlinear regression

scraprate

Ik
/s
fmu
fa

Nenlinear regression

scraprate

K
/s
Jo
fa

Manlinear regression

scraprate

ke

s
fmu

fa

Robust
Coefficient std. err. t
(162975 1084642 1.62
2118752 .8334912 6.34
22 ., 69889 . 29708848 T6.17
2282588 536041 8,41

2013

Robust
Coefficient std. err. t
.B7EB426  .8312176 2.53
+» 1695875 815423 B.73
12 .80084 .1248B53 1B2.57
-, 2488859 .B94388 -2.64

2012

Robust
Coefficient std. ere. t
=, BET644 8183942 -@.43
-, 8823421 . Belea3s =1,35
22.78383 1873157 121,21
(2864861 1446153 1.98

2011

Number of obs

R-sguared =
Adj R-squared =
Aot MSE =
Res. dev. =
Frlt [95% conf.
8,113 - 84841842
B. Bea . 1442581
o, eea 221.P9564
a.683 -, 836420873
Humber of obs =
R-squared =
Adj R-squared =
Root MSE =
Res, dev. =
Pt [95% canf.
@.816 .B155897
B, 0ea +1381527
2. 088 12.547
8.812 =. 43976594
Number of obs =
A= squared =
Adj R-squared =
Root MSE =
Res. dew, =
P lt] [55% conf
8. 668 = . B452695
. 186 -, 206874
@. 888 22,32374
2,855 - E9GEETA

a2
8.9787
@.9764
-B1356
-246. 1658

interval ]

. 3663542
. 2794923
23.38213
1.3@5489

a1

@, 9852
8.5547
.BaT5714
-188. 2926

interval]

+1428955
. 2888623
23.85308
- .8588824

a8

8. 9877
8. 9863
.B124868
=241.346

interval)

0293488
8313837
23.88352
3726996



Menlinear regression

scraprate

{k
s
JSmu
fa

Coefficient

-.H386741
-.1345394
22.33333
. 2891608

Nonlinear regression

scraprate

Mk
/s
Smu
fa

Coefficient

1269962
. 2B16579
21.83853
- . B98a228

Monlinear regression

scraprate

/K
/&
fmu
fa

Coefficient

-. 8463837
=. 1483973
21.1B471
« JA4BE6T

Robust
std,

8587732
LB538582

- 256408
. 1187634

Rabust

std. err.

LBedB186
B2E5122
. 1288458
. 2561947

Robust
std.

JBAZ5A59
BABEBG3
1647162
8638149

arr,

Err,

-8.76
-2.54
§9.41

2.43

2010

t

1.97
7.87
188.71
=@, 35

2009

-1.49
-3.64
128.61
5.87

2008

Kumber of obs

R-squared =
Adj R-squared =
Root MSE =
Res. dev. =
P |t [95% cont,
8,451 -.1417492
8.916 -, 2422533
8. 88 22.41267
a.a18 . B4B@375

Kumber of obs

R-squared

Add R-squered =

Root MSE L

Res, dev. =
Pxlt| [95% conf.
a.858 - . 0843247
. ea8 .1437142
. 8ag 21.59294
a.727 =. 6186731

Number of obs
R-squaraed
Adq R=squared
Root MSE
Res. dev,

B3|t

B.284
@.881
@.089
2,889

[95% conf,

=. 137944
-.2314184
28, B4950
« 2064893

39
a.9817
8.3736

8135222
-229.2184

interval]

B644811
-, 8268256
23.4541
.5383241

k]
8,9940
8.9933

Be83428
-268.15

interval]

L 2583171
. 2596816
12.88412
A3B6Z74

37
@.9985
@.9894

8111587
-231.6894

interval]

LBB17ER
-.BE53Te3
21.51983
AE32441



Kognlinear regression

Number of obs

Robust
scraprate  Coefficient std. err. t
[k -. 1657996  ,1B1722E -1.63
/s -.2125228 + B3501E6 =-5.92
fiu 21.26323 . 1568578 135,56
fa =, 0186214 . 39983159 -@.85
2007
Menlinear regression
Robust
scraprate  Coefficiemt std. err. t
Fis - . 2635142 1246873 -2.11
/s =, 241B5TE 8384218 -7.98
Smu 21.87819 1244037 169,37
Ja -, 363612  .5258297 -8.69
2006
Monlinear regression
Robust
scraprate Coefficient std. err. t
fk =. 3227953 . 1418781 -2.29
fs =. 2575812 . 8295686 -B.71
S 28,.87417 . 1254864 166.45
fa -.54840611 5841683 -@.94

R-squarad =
Adj Re-squared =
Root MSE =
Res. dev, -
Pt [95% conf.
8,113 -.3738821
@, 808 - . 2856866
@, Bad 28,94372
@.963 - B314227
Mumiser of abs =
R-sguared =
Adj R-squared =
Root MSE Ll
Res. dew. =
Paltl [95% conf.
B.843 -.3176524
9. 808 -.3@47833
0. 008 28, 81647
8,494 =1.434417
MNumber of ohs =
R-squared n
Adj R-squared =
Root MSE =
Res. dev. "
Pt
@.829 =. 6189152
2. 088 -.J17EBE3
2.e8d 28.61886
@, 355 -1.741432

36
@.9918
8. 9898

.@114416
-223,9524

interval ]

841483
-,139359
2158274
S TSE1799

35
B.5337
8.9929

. BESEAS
-227.533

interval]

-. 899378
-, 1B86112
Z1.32392
. 7871931

34
@.9942
@, 9934

2899591
-221.1983

[95% conf. imterval]

= . B346755
-, 15871142
21.13828
. BAS6298



Menlinear regression

scraprate

fk
/s

Sau |

fa

Coefficient

=, 4265939
-.278259

24.TOR1
-,9969259

MNoplinear regression

scraprate

ik
fs
ou
fa

Coefficient

-,5181245
=.3013EED

28.53248
=1.276745

Wonlingar regression

scraprate

Mk
/5
JSmu
fa

Coafficient

-.5845976
=¥ 31ﬁ5159

20,24799
-1.381178

2005

Robust

std. err.

1776882
LB294275
L137336E
TTZETI6

Robust

std. err.

L 202319
-B296T 38
- 1258167
B771212

Robust

std, err.

L1754198
+B2T1468
. 1886898
+TB38118

=240
-9, 46
163,33
-1,29

2004

-2.52
=18.16
164,22

-1.46

2003

-2.BB
-11.44
1B6.29

-1.66

Mumber of obs

R-squared =
Add R-zquared =
Root MSE =
Res, dev. -
x|t [95% conf.
a.833 -. 7898436
8. 088 - . 33B4449
B.Bea 28.53767
B.2a87 -2,.577829
Wumber of abs =
A-squared =
Adj R-sguared =
Root MSE =
Res. dev. ]
Frlt]! [95% conf.
8,818 -, 5245563
8. paa =, 3621729
L] 28, 28330
@.157 -3.8734486
Kumber of cbs =
R-sgquared =
Adj R-squared =
Root MSE =
Reg. dev, =
Pslx| [95X comf,
@.8a8 -.B645293
2,988 -, 3663194
B, ass 28.82457
8,108 -2,989427

SUVs and Vans

33
@.0540
B.9542

. 0293597
=218.6411

interval)

=.B633443
-, 218873
21_BEES3
« 2831768

32
B.59954
8.9947

. BB99158
-114.8227

inmterval]

= BE56527
=, 248685
28, 73356
. 5199565

31
8,5955

@, 9958
.BE75580
=219, 1885

interval]

-, 14456659
-, 2549183
208.471

. JGTETLS



Nonlinear regression

scraprate

fk
’s
Jmu
fa

Coefficient

. 2993842
. 1942485
23.981%96
= . 1248496

Menlinear regression

scraprate

i
fs
FLT
fa

Coerficient

. BE56E9

+ 1993855

22,.98445

-.2B47731

Monlinear regression

scraprate

fx
/s
Jmy
fa

Coefficient

, 2858862
2443799
23, 3ea77
5311698

2020

Number of chs =

.3873374

Robust
std. err, L
L 8362155 2.74
LB181285 18.72
.1332853  188.03
.1739238 -@.71
2019
RobustT
std. err. t
L2303T7a8 2.13
LBI62TIT T.59
.1135869 281.65
.1415356 =2.81
2018
Robust
std. err. t
LBSOE2T77 3.44
LB166175 14.71
.13133%8 177.41
1.37

2017

R-2quared =
Adj R-sguared =
Root MSE =
Res. dev. "
P |1l [95% conf.
8,809 . 8263966
B. gea 157729
B, Be8 23.7135
8.479 - ATas57
Humber of obs =
R-squared =
Adg R-squared =
Root MSE =
Res. dewv. =
Pt [95% conf.
B.844d LBB32641
a.80a 1463268
a.8ea 22 .67587
@.851 -, 53TBE1BL
Nunber of obs =
A-squared =
Adj R-squared =
Root MSE =
Res. dev. =
YA | [95% conf.
8. 8al1 ,BB843978
8. 888 2187677
8. 600 23.83512
8.178 -.2522941

48
8,9948
8.9341

.BB5R4TE
-358.3324

interval]

1723718
. 238788
24.25043
2264708

45
8.9925
@.9918

LBESTEET
-348, 182

interval]

L1279538
L25244843
23,133a5
.Ba1ps3s

43
B.9953
9.9342

LBRA53573
-331.8835

intervall

. 3256146

27739592
23, 56643
1.314632



MNonlingar regression

Numbper of cbs

[}

Robust
scraprate | Coefficient std, err. t
Tk 2373155 JBE3IBE51 2,98
/s 2684414 JB212144 12.28
fmu 23.29876 1447833 i6l.81
/& . TBABITY . 5358558 1.46
2016
Monlinear regression
Robust
scraprate  Coefficient std. err. t
FiL «12408437  .B457943 1.7
/s L2I1B256  .@221446 18.47
L 22.51142  .1618631 139.08
fa -.BB93497 2520016 -8.84
2015
Monlinear regression
Robust
scraprate | Coefficient std. err. t
fk JATTIT2EE . 2453211 1.95
fs L3352294 9427924 7.83
Jmu 23,1923% (1326572 174,83
fa 1.755561 1.45318 1.1

2014

R-sguared =
Adj R-squered =
Root MSE -
Res. dev, =
Pt [23% conf.
a.885 8795559
8.908 .2175654
B.88d 23. 8863
@.151 -, 2981871
Mumber of obs =
R-squared =
Adj R-squared =
Root MSE =
Res. dew. =
Prlt] [95% conf.
8.018 +B312543
2. 890 . 1869563
8. 890 22,18353
8.971 -.5281359

Mumber of obs

R-squared

Adj R-squared =

Root MSE =

Fes. dew, -
Pt [95% conf.
a.e68 -. 8283854
. epa . 2483562
. Ban 22.922583
8,235 -1,194551

9.9933
89,9926
LBREIT96
-325.5265

interval]

AL58752
.3833173
23, %3111
1.B&7983

a1
8.9931
9.9924
BBEIET
=383.7576

interval]

+ 2168331
+ 2766949
22.83946
. SB14365

39
9.9893
@.9881

BBEIEZ3
-261.2918

interval ]

LO757511
4221826
23.46154
4.785673



Monlirear regression

Number of obs

R-squared =
Ad] R-sguared =
Root MSE =
Res. dev. =
Ps|t] [95% conf.
a.184 = .B258829
. eaa -13B2158
9. 888 22.55284
a.771 -. 7451638

Number af obs

Robust
sepaprate  Cosrficlent std. err. t
fk .115812 8714715 1.67
/s 2861964 8335580 6.15
JSmu 22.89451 . 1688258 135.61
fa -, @93a83ar » 3213535 -2.29
2013
Nonlinear regression
Robust
scraprate | Coefflcient std. err. t
i LBE2E5AT .B699913 1.19
/s .1662751  .@389278 4.27
JSmu 23,71347 . 2685832 88.32
fa -.1636465 2753579 -8,59
2012
Monlinear regression
Robust
scraprate  Coefficient std. err. t
fk L1665238 1819132 1.85
/s L16B4361 . G4ARBEE 3.76
FLT 24.27264 3388481 73.36
fa . 826359 .A958ED @.85

2011

R-squared =
Adj R-squared =
Root MSE =
Res. dev. =
Pt [45% conf.
B.243 - B58TE28
@, a8 8874
0. 808 23.16943
B.556  -.7215746
Mumber of obs =
R-squared =
Adj R-squared =
Root MSE =
Res. dev, =
Pt [95% conf.
a.383 -. 1881655
8. 881 8775637
a. 680 23.68165
8.958 -.977728

41

2. 9864
B8.9848
8118383
-257.4387

intarval]
.263B17
2741765
23.23899
55TPE4A3

41
B.9822
B.9883

LB137538
-239,.1858

interval]

. 2244842
. 2451582
24,25731
. 3942815

8. 9804
8.9782
LB143355
-238. 3088

interval]

.3132134
. 25938B5
24,.94363
1.83p446



Nenlinear regression

scraprate

Ik
/s
F L]
fa

Coefficient

. 1494768
< 1E92133

24,3892
. 3484398

Nonlinear regressian

scraprate

ik
is
L H

fa

Coefficiant

=.@E51961
=, 166E08q
22.58521
L 1548432

Nonlinear regression

scraprate

Mk
/s
S

fa

Coefficient

-.B167623
-.B97442
22.22168
. 2895324

Robust
std.

»1491421
LB513187
+ 3854783
.B9525E50

Robust

std. err.

L BO54523
.B534385
. 3284991
3687582

Robust

std. err.

LB32a844
8584933

.342874
.B433338

err.

1.8
3.69
63.86
@.33

2010

-8.89
=3.11
73.11

@.43

2009

-8.52
-1.67
64,81

6.68

2008

Number of ohs =
R-sgquared =
Ady R-squared =

Root
Res.

Pt

@,323
@.e81
@. B8
8. 786

MSE "
div, =

[95% conf,

-. 1332978
LB858472
23.52664

-1.476876

Number of obs

R-squared =
Adj R-gfquared =
Root MSE =
Res. déw. =
Px|t] [55% conf.
a.378 = 272L7HEE
8. 884 - . 27465984
B, 898 21.95826
B.671 = . 5TE4894

Numbrer of obs

R-squared =
Adj R-sguared =
Root MSE -
Res. dewv. =
P |t [95% conf.
8. 685 -.BE28386
B, 185 -. 2164476
B. e 21,52411
8. eaga 2814291

Not estimated due to data anomalies.

2007

39
a.9748
@8.9712

.B148947
-221.6694

interval]

4522514
2933795
25.89177
2.157956

38

8.9789
B.9764
0159398
=218.5452

interval]

. 1P87E62
- . @574984
23. 213216
BBTTTSI

37
@.9812
@.9789

LBL55945
-287.1338

interval]

.B4B514
8215635
22,91928
3777558



Moalinear regression

scraprate

Ik
/s
FLT
fa

Coerficient
1.533828
+3254873
22.49111
8.545664

Nonlinear regression

scraprate

ik
is
fmy
fa

Coefficient

2,733868
+3TB439
22.6323%
16,3984

Nonlinear regression

scraprate

fe

fs
FLT

fa

Coefficient

3.898165
LAB64682
22.45823
25.85295

Robust
sto. err. 1
1.,161984 1.11
B567862 5.73
, 2869965 78.39
B.15954 1,85
2006
Robust
std. ere. t
2.15845 1.27
8552153 B.71
L 2523589 B9.869
14, 42688 1.14
2005
Rooust
std., arr, t
3.347167 1.16
LB624316 6.51
. 2685159 83.76
23.5523 1.86

2004

Number of abs =

R-sguaread =
Adj R-sguared =
Raot MSE =
Res. dev. =
Pt [95% conf,
a.234 -1.848884
2. B8a . 2895911
8. 88a 21.,90596
8,383 -8.895827

Number of obs =

a5
B.9761
B.9738
LB178283
-186, 841

interval]

4,196851
4412236
23.87626
25.18715

EL
@.9817
@.59793

LB155449
=-198.9214

[%5% conf. interval]

R-squared =
Adj R-sguared =
Root MsE =
Res. dev. =
P t]
@.213 -1.658818
B, 08 +25TGT42
2. 08a 12.117@2
B.265 =13.@7322

Humber of obs =

R-squared =
Adj R-sguared =
Root MSE =
Res. dev. =
Pxlt] [a5% conf.
@.254 -2.947561
.88 LATBIT3A1
9. 808 21.94185
8. 296 =-23,11692

7.125754
832838
23.14776
45, 85482

EE]

B.9817
B.9792
LB1S88ET7
-187.7565

intervall

18.74389
.5341472

23,8394
73.22282



Nonlinear regression

scraprate

Ik
/s
fmu
fa

Coefficient

4. 9pdaes
4382331
2Z.36386
33.49258

Menlinear regressicn

scra pr'.at e

Mk
/s
Joiu

fa

Coefficient

4.31248
LA4ITAET
22,2485
31,53653

Monlinear regrassion

scraprate

fk
s
Fmu
fa

Coefficient

1723863
EBTFILED
29.82785
1.162243

Robust
std. err. t
3.667852 1.34
LB568022 7.78
L 241193 92.83
27.82451 1.24
2003
Robust
std. err. t
2.528892 1.71
.B481578 9.59
. 1948494 113 .58
18,8263 1.58
Pickups
2020
Robust
std. err, T
LB843281 1.83
LBZEI986 7.32
21582 134.58
LIBTEOET 1.

2019

18

Number of obs

R-sgquared =
Adj R-squared =
Raot MSE =
Res. dew,
Pt [95% comf,
8.192 =21.684243
a.8ea .3216948
8. 688 21.895
B8.226 -21.86463

Humber of obs

R=squared =
AdY R-squared =
Root MSE =
Res. dew, =
Pxt| [95% conf
B.181 - . 8958696
B, G +» JATER29
&, eod 21, 64885
B.12E -9.696851

Number of obs

R-squared =

Adj R-squared =

Root MSE =

Res. dev. =
Pyt [95% conf,
a.e75 -.@183217
[ 1508262
B, Bgd 28.59986
a.246

- 8343642

——

32
@.9862
a,9843

. 8124497
-194, 1688

interval]

12.42326
5547714
21.88313
88.E4975

29
8.9911
2.59897

L BB56BE3
-198.942

interval]

9.52883
+ 3378185
22, 44815

72.7681

a4
B.98598
B.9887

L BB5EEA5
=331.1781

imterval]

3629342
2644135
29.46324
3.158851



Monlingar regression | Mumber of obs = 48
., R-squared = 8. 9878
Ad] R-squared = 2. 9855
Root MSE = .@as55e97
Res. dev. = -385.5822

Robust
seraprate  Coefflcient std. err. t Pyt [95% conf. interval]
kK 6176812 .3511815 1.76 @.887 = B344656 1.339668
/s L2TTT124 8318247 8.73 @.000 . 213162 .3422558
Jmu 29.34375  .2385965 127.93 0.008 2B.B7528 29.81222
fa B.376582 5.398538 1.55 @.13@ -2,572241 19.32524

2018

Nonlingar regression Number of cbs = 43
R-sguared = 8.9938
Adj R-squared = @.,9932
Roat MSE = .0834778
Res. dew. = =-347.312

Robust
scraprate Coefficient std. err. t Pt [95% conf. interval]
fk .1787535 JET26611 2.35 B.8249 8237825 L 3177244
fs .2212853 JBI25825 9.5 ©B.888 L 175528 . 2668826
Fmu 28.17628  ,1592773 176,98 ©.880 27.85411 28.45845
fa 1.451482 7545357 1.3% @.171 -, 4747383 2.577535

2017

Monlinear regression Mumber of obs = 39
R-squared - B.94931
Adj R-sguared = 28,9923
Raot MSE - . Basa7a
Res. dev. = =385.6666

Robust
scraprate  Coefficient std. err. t Plt] [95% conf. interval]
K LB69923 0456847 1.5 @.142 - 8248521 . 164598
s 1658175 .BI9837 5.56 @.,88e 1952451 . 2263898
fmu 2B.64269  ,19@3434 158.48 &.888 28.25628 29.82911

fa .1386153  .4291921 @8.32 8.743 - 7326983 1.0889922

2016



Monlinear regression Humber of abs = EL

R-sguared - 8.9945

Adj R-squared = 2.59938

Root MSE = L BB4BB15

Res, dewv. = -322.8441

Robust

scraprate  Coefficienmt std, err, t Prlt] [95% conf. interval]
Ik . 2583476 , 1887258 .56 @.915 .B538632 4628319

Is . 2437667 J8215116 11.12 0.988 1992837 .2BB2497

fmu 27.46822 1616322 169.94  ©.980 7. lqe8s 27 . 79635

fa 2.324941  1.245974 1.87 @.879 -. 2845199 4, 854403

2015 (The data for 2015 was checked and appears to contain anomalies.)

Mealinear regreéssion Munber of obs = 39
R-sguared = 8.9715
Adj R-squared = B.9692
Root MSE = Ble3age
Res. dev. = -149.275
Robust

scraprate  Coefficient std. err. t Pt} [25% conf. interval]
Sk - . BBE9EE ,BE88125 ~7.74  @.800 -.Bea1219 -.B28a713
f8 | -.8267084 Jopagdaz -514.34 8.9088 -.82a782 -.B286188
LT 17 . 24647 . 3715951 73.32 B_aeg 26 . 49284 28. 0881

fa | .es17211 . .

2014
Monlinear regression Mumper of obs = 42
R-sgquared = @.9928
Adj R-squared = a,9912
Roat MSE = .BB&3162
Res, dev. = -318.5223
Rabust

scraprate | Coefficient std. err. t Pyt [95% conf. imterval]
fk LABOBTE L 1EEB@211 .68 @.e13 . 1854452 . BETAED
f5 25214 828491 12,38 @.608 . 2186583 . 2936218
fmu 18.77746 . 259986 118,72 @.Baa 2B8.2513 29.38361
fa 3.B45631 1.883215 2,13 @.839 .1852133 7.496845

2013



Nerlinear regression

scraprate

FL
/s
oy
/a

Coefficient

2608273

. 283669
29, 85187
1.268124

Monlinear regression

screprate

fk
rs
Sfmu

fa

Coefficient

- 2461272
1341885
29.68837
1.299452

Nenlinear regression

scraprate

fk
is
fmu
fa

Coefficient

.3133556

215844
28, B3097
2.881825

Robust

std. err. t
.B4a5661 6.41
. BB636E6 31.98
1722634  173.52
3126969 4 .06

2012
Robust
std. err. T
. 8414583 5.94
LBBT7491 25,92
. 2886893 141.89
3343239 3.86
2011

Robust
std. err. L
LB597436 5.25
LB892414 23.38
2970968 97.684
. 5286852 3.78

2010

Wumber of obs

R-squared

Adj R-squared =

Root MSE =

Res. dev, =
Palt| [95% conf.
8,808 1778327
B.088 .1987651
. 888 25,54284
9.08e 6345481

kumber of obs =

R-squared =
Adj R-sguared =
Root MSE =
Res. dev. =
Pyt [95% conf.
a. e - 162862
a,0eda 178988
[ 29.177129
o, 0ea 6124121
MNumber of cbs =
R-cguared ]
Adj R-squared =
Root MSE -
Fes, dew. =
x|t [95% conf.
8. 008 . 1928696
B. 008 .197883
2. 008 28.22784
g.ee1 9277369

41

8. 9978
8.94976
.eada542
-335.5116

interval]

.342222
216573
38, 24911
1.5817e3

a8
@.9979
9.9977

. B39673
-333.8739

interval]

.3360923
+ ZB937 29
38.82345
1.968493

39
@.9858
@.9953

. Ba51688
-384, 3429

interval]

4346416

.234685
29.43411
3.874313



NMonlinear regression

Robust
scraprate | Coefficient std. err. i
Ik 4715453 117443 4.82
/s .2345474 813218 i7.74
Smu 27.28224 17958064  151.9B
fa 2. 982657 .9EEBE32 .08
2009
Nonlirear regression

Number of obs

R-sgquared =
Aoj R-sguared =
foot MSE =
Res. dev. =
Pelz| 195% conf.
B.aga A32B764
B.a08 + 2876852
B.008 26917448
a.984 1.81365

Mumber of obs

R-squared =
Ad] R-squared =
Raot M5E =
Res. dew. -
Pt [#5% conf
B.01E Be7T523
B Bed 1738415
B. e 27 . 83689
B.BEE -.1748164

Number of obs

Robust
s¢raprate | Coefficient std. err. T
Ik 3712787 + 148487 2,58
[& L 2164955 L BTLI465 18.19
S 27.4857 .1887166  151.65
fa 2,248836  1.1B4636 1.98
2008
Menlinear regression
Robust
scraprate | Coefficient std. err. t
fk +B59872 L 2598572 3.38
/s 2774262 LB1TES1E 15,54
fuu 26.61169 . 1835473 144.99
I.264933 2.85

fa 6.448917

2007

R-squared

AdY R-sguared =

Raat MSE =

Res. dev. L
Px|t] [95% conf
@.0@2 3295565
B. 888 2418637
[ 26.23782
. 088 1.835388

38
B.9966
B.9962

,0B51713
-296.499

interval]

L7182222
. 2614056
27.64704
4 951665

33
@,9973

@, 0969

L B040844
-268, 5833

. interval]

ET4EB51
. 2599406
27.77531
4.671689

E1
8.9972
8.9969

LBE45169
-208.8713

. interval]

1.3BB588
. 3137888
26, 98556
11.86245



MNenlinear regression

Robust
scraprate  Coefflcient std. err. t
Tk 1.1118597 .3194454 3.48
s .30BE894 LO1TETET 17.62
Smu 26.87453 .1BZ1526 143.15
fa 8.3337 2.722929 3.86
2006
wonlinear regression
Robust
scraprate  Coefflclent ste. err. t
e 1.114714 3162234 3.42
/s .3I858258  .e175222 17.45
FL 25.68882 .1787994 143,63
fa B.89762 2,71228 2.99
2005
Manlinear regrassion
Robust
scraprate | Coefficient std. err. t
ik 1.1563149 4871715 2.86
fs 3156541 .B212138 14,88
fLT 25.26087 1957748 129.83
fa . 760985 3.533183 2.48

2004

Nunber of obs

R-squared =
Adj R-squared =
Root MSE =
Res. dev, "
Pyt [95% conf.
8.882 4595753
2. 808 . 2668572
B, Ao 25.78343
B.8e5 2.788249

Number of obs

R-squared =
hdg R-squared =
Root MSE =
des. dev. =
Palt] [35% conf.
8,882 L4847 64
2,898 L 2TeRdBh
2. 808 25.31566
8,886 2. 558487

Pt

8. 888
B, aae
a.8ae
B.813

Nusber of obs
R-squared
Adj R-squared
Root MSE
fes. dev.

[95% conf,

. 3290896
2721597
2485984

1,52375

35

@. 9977
@.9974
884222
-287.6425

interval ]

1.762618
.3357216
26.44643
13.88715

34

8., 9973
8.9977

. BA4Ea5s5
-281.622

interval]

1.788951

.341611
26, 84597
13.63683

2
a,9973

@, 9968

- BEde282
=257.4981

interval]

1.907282
. 3591886
25.66189
15.99822



Wonlinear regression

scraprate

Tk
fs
fmu

fa

Coefficient

1.87827
.3289591
2479162
B.23p286

Nonlinear regression

scraprate

fk
/s
fmy
fa

Coefficient

1.88173
.3275136
24.81296
B.579924

Robust

std. err. T
L 3481553 3.17
. B196895 16,37
LATERZZE 138.56
3.826792 2.72

2003

Robust
std. err. t
. 3296791 3.29
B19E585 16,49
1853162 129.58
3.8173@83 .84

Number of obs

R-sguaread =
Adj R-squared =
Root MSE =
Res. dev. =
P> [95% conf.
@.884 -3B814935
@, aaa . 2BE7283
a. a0 24.42512
B.811 2.838183

Number of obs

R-squared =
Adj Resguared =
Raot MSE =
Res. dewv. -
Pt [95% conf.
a.8a3 LAE52982
B, 808 . 2866938
&, 808 23.63284
@.aea 2,377769

32
8.9972
8. 9968

. BB45382
-158.8687

interval]

1.775047
. 3611273
25.15813
14,43839

EL:]
@.8a71
8.9987

LBB45587
-242.5996

interval ]

1.75B8162
L36E3334
24.39388
14.78208
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